Algebra I and II Notes

Eric Walker*

Contents

1.1 Introduction to Groups . 2
1.2 Presentations . 4
1.3 The Symmetric Group . 7
1.4 The Quaternion Group . 7
1.5 Fields . 8
1.6 Homomorphisms and Isomorphisms . 9
1.7 Subgroups . 10
1.8 Quotients . 15
1.9 The Index of a Group and Lagrange's Theorem . 18
1.10 The Isomorphism Theorems . 20
1.11 Group Actions . 23
1.12 Series and Extensions . 26
1.13 The Class Equation . 31
*Drs. Day, Dummit, Foote

1 Algebra 1

1.1 Introduction to Groups

Definition 1.1 .1 (group). A group is a set G with a binary operation • satisfying:

1. - is associative,
2. G has an identity, and
3. every element $g \in G$ has an inverse under \bullet.

Definition 1.1.2 (binary product). A binary product is a function $\bullet: G \times G \rightarrow G$ written $g \bullet h$ or $g h$ instead of $\bullet(g, h)$.

Remark 1.1.3. Note that a function needs to be well-defined; i.e., there must be an unambiguous rule defined for all inputs, and it must be closed.

Definition 1.1.4 (associative). An operation is associative if for all $x, y, z \in G,(x y) z=x(y z)$.
Definition 1.1.5 (identity). An identity is an element $1 \in G$ such that for all $x \in G, 1 x=x$ and $x 1=x$.
Definition 1.1.6 (inverse). We define the inverse of $x \in G$ to be an element $y \in G$ such that $x y=1$ and $y x=1$.

Example 1.1.7. The following are groups:

- \mathbf{Z} under addition.
- \mathbf{C}, \mathbf{R}, and \mathbf{Q} under addition.
- Any vector space V under vector addition.
- Permutations on a set S; i.e., $\{f: S \rightarrow S \mid f$ is a bijection $\}$ under function composition.
- The trivial group; i.e., $\{1\}$ under multiplication or $\{0\}$ under addition or $\{a\}$ under an operation.
- $G L_{n}(\mathbf{R})$, the general linear group; i.e., the set of invertible $n \times n$ matrices with real entries under matrix multiplication (Definition 1.5.3).

Definition 1.1.8 (abelian). A group G is abelian if for all $g, h \in G, g h=h g$.
Example 1.1.9. $G L_{2}(\mathbf{R})$ is nonabelian, because

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Remark 1.1.10. In terms of notation, groups can be written additively or multiplicatively. Multiplicative notation uses \bullet, \times, juxtaposition, $\circ, *$, and so on. 1 is the identity, g^{-1} is the inverse of $g, g^{0}=1$, and for $n \geq 1, g^{n}=g \cdots g$ and $g^{-n}=g^{-1} \cdots g^{-1} n$ times. Additive notation uses + . The convention is that additive notation is only used for abelian groups. 0 is the identity, $-g$ is the inverse of $g, 0 \cdot g=0$, and for $n \geq 1, n g=g+\cdots+g$ and $-n g=-g+\cdots+-g n$ times.

Proposition 1.1.11. Let G be a group. The following facts are easily proven.

- The identity is unique.
- For all $g \in G$, g has a unique inverse; i.e., there is a well-defined function $G \rightarrow G$ that sends g to g^{-1}.
- For all $g \in G,\left(g^{-1}\right)^{-1}=g$.
- For all $g, h \in G,(g h)^{-1}=h^{-1} g^{-1}$.
- n-fold products are independent of association.
- Power laws hold; i.e., $g^{n+m}=g^{n} g^{m}$ and $g^{n m}=\left(g^{n}\right)^{m}$.
- Cancellation holds; i.e., if $g x=g y$ for some g then $x=y$ and if $x g=y g$ then $x=y$. This implies three-term equations have unique solutions in G; i.e., $g x=h$ and $x g=h$ both have unique solutions $x \in G$.

Definition 1.1.12 (order of a group). If G is a group, then the order of G is its cardinality as a set. We usually write $|G|$ or sometimes $\# G$.

Definition 1.1.13 (order of an element). If G is a group, for any $g \in G$, the order of g is the smallest nonnegative $n \in \mathbf{Z}$ such that $g^{n}=1$, or ∞ if no such n exists. We write $|g|$.

Example 1.1.14. Since

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

the matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

has order 2. One can see that the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

has order ∞.
Remark 1.1.15. When it can be written, the multiplicative table of a group is a good way to communicate that group. For instance, the group $\mathbf{Z} / 3 \mathbf{Z}=\{0,1,2\}$ under addition mod 3 has table

				x
		$x+y$	0	1

Definition 1.1.16 (dihedral group). The dihedral group $D_{2 n}$ is the set of isometries of the regular n-gon with operation composition. The isometries can be thought of as inducing permutations of $\{1, \ldots, n\}$ that respect adjacent vertices.

Remark 1.1.17. The order of $D_{2 n}$ is $2 n$.
Example 1.1.18. The group D_{6} is the set of isometries of a regular triangle. Label the vertices 1,2 , and 3. There are two distinguished isometries: the first, s, is a reflection about the vertex 1 . As a permutation, s is the function $1 \mapsto 1,2 \mapsto 3$, and $3 \mapsto 2$. The second, r, is a rotation counterclockwise. As a permutation, r is the function $1 \mapsto 2,2 \mapsto 3$, and $3 \mapsto 1$. The isometries r and s easily generalize to $D_{2 n}$ for all n.

We claim $D_{2 n}$ is not abelian, as $r s \neq s r$. In D_{6}, this computation is quickly evident; $r s$ is the function $1 \mapsto 2,2 \mapsto 1$, and $3 \mapsto 3$, while $s r$ is the function $1 \mapsto 3,2 \mapsto 2$, and $3 \mapsto 1$.

In fact, in $D_{2 n}, r s=s r^{-1}$. To see this, we compute:

$$
\begin{array}{c|cccccc}
i & 1 & 2 & 3 & \cdots & n-1 & n \\
\hline s(i) & 1 & n & n-1 & \cdots & 3 & 2
\end{array}
$$

and

$$
\begin{array}{c|cccccc}
i & 1 & 2 & 3 & \cdots & n-1 & n \\
\hline r(i) & 2 & 3 & 4 & \cdots & n & 1
\end{array}
$$

Therefore a quick computation verifies that

i	1	2	3	\cdots	$n-1$	n
$r s(i)$	2	1	n	\cdots	4	3
$s r^{-1}(i)$	2	1	n	\cdots	4	3

as claimed.
We can verify a few other relations among r and s. It is evident that $s^{2}=1$ and that $r^{n}=1$. Furthermore, $r^{k} \neq 1$ for $k \in\{1, \ldots, n-1\}$. Therefore, $|r|=n$ and $|s|=2$.

As a set, $D_{2 n}=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, r^{2} s, \ldots, r^{n-1} s\right\}$. In fact, $D_{2 n}$ is generated by r and s, meaning every element $x \in D_{2 n}$ can be attained as a finite composition of r and s. Furthermore, the relations above completely characterize $D_{2 n}$; i.e., every equation in $D_{2 n}$ in r and s is a consequence of the relations $s^{2}=1$, $r^{n}=1$, and $r s=s r^{-1}$. We thus say that $D_{2 n}$ has the presentation $\left\langle s, r \mid s^{2}=r^{n}=1, r s=s r^{-1}\right\rangle$.

Definition 1.1.19 (group homomorphism). $\varphi: G \rightarrow H$ is a (group) homomorphism if for all $a, b \in G$, $\varphi(a b)=\varphi(a) \varphi(b)$.

Definition 1.1.20 (group isomorphism). $\varphi: G \rightarrow H$ is a (group) isomorphism if φ is a bijective homomorphism.

Remark 1.1.21. Being isomorphic is the right notion of sameness for groups. Also note that being isomorphic is an equivalence relation on the class of groups.

Definition 1.1.22 (kernel of a group homomorphism). If $\varphi: G \rightarrow H$ is a group homomorphism, then the kernel of the map φ is $\operatorname{ker} \varphi=\{g \in G \mid \varphi(g)=1\}$.

Proposition 1.1.23. φ is injective if and only if $\operatorname{ker} \varphi=\{1\}$.
Remark 1.1.24. One may show that $G \cong H$ by defining a function $\varphi: G \rightarrow H$ that you suspect is an isomorphism. Show that φ is a well-defined group homomorphism. One may use presentations, if available. Then show φ is injective, often by showing $\operatorname{ker} \varphi=\{1\}$ (see Lemma 1.7.47 to come), and show φ is surjective, often by showing $\varphi(G)$ contains a generating set for H. Also, one can simply produce a φ^{-1}.

Remark 1.1.25. On the other hand, to show $G \not \approx H$, find a property or invariant that is preserved by isomorphisms which G and H do not share.

1.2 Presentations

Example 1.2.1. The presentation $\langle s, t| s t^{2} s^{-1}=t^{3}, t s^{2} t^{-1}=t^{3}$, $\left.s t=t s\right\rangle$ is trivial, but not obviously so. To see this, observe that

$$
\begin{aligned}
s t^{2} s^{-1} & =t^{3} \\
t s t s^{-1} & =t^{3} \text { via the relation } s t=t s \\
t^{2} s s^{-1} & =t^{3} \text { via the relation } s t=t s \\
t^{2} & =t^{3} \\
1 & =t .
\end{aligned}
$$

Similarly, $s=1$. Thus this is the trivial group.
Example 1.2.2. The following are presentations for known groups:

- $\langle a \mid \emptyset\rangle \cong \mathbf{Z}$.
- $\langle a, b \mid a b=b a\rangle \cong \mathbf{Z}^{2}$.
- $\left\langle a \mid a^{n}=1\right\rangle \cong \mathbf{Z} / n \mathbf{Z}$.
- $\langle a, b \mid \emptyset\rangle$ is the free group on two generators.

Remark 1.2.3. We are reasoning about group presentations without having defined them, but this is okay. We will define group presentations based on free groups, then later define free groups. This is the general idea.

Let S be a set of letters. Let R be a set of equations in S under a group operation. Given any equation $u=v$, it can be written as $u v^{-1}=1$. Starting with $F=\langle S \mid \emptyset\rangle$, the free group on S, we then consider $R=\left\{r_{1}, r_{2}, \ldots,\right\} \subseteq F$, which are terms that we want to equal 1 . Recall that G / N has elements $x N$ where $x \in N$ if and only if $x N=1 N . N$ is the set of elements forced to be 1 in the quotient. Thus build the smallest possible normal subgroup of F containing R. Define a normal subgroup $N=\left\langle\left\{x r x^{-1} \mid r \in R, x \in F\right\}\right\rangle \unlhd F$. Then define $\langle S \mid R\rangle=F / N$.

Definition 1.2.4 (string). Let S be a set (of letters). A string on S is a finite sequence of elements of S, written $s_{1} s_{2} \cdots s_{n}$ for $s_{i} \in S$.

Definition 1.2.5 (Kleene star). The set of all strings in S, written S^{*}, is the Kleene star of S.
Example 1.2.6. If $S=\{a, b, c\}$, then some elements of S^{*} are a, $a a a, a b c a b c$, and ε, the empty/null string.

Remark 1.2.7. Note that S^{*} has a binary product, given by concatenation. So $a \cdot a b c a b c=a a b c a b c$, and $a \cdot \varepsilon=a$.

Definition 1.2.8 (monoid). A monoid is a "group that doesn't necessarily have inverses." That is, it is a set with a binary product such that the binary product is associative and there exists an identity element.

Proposition 1.2.9. S^{*} is a monoid under concatenation with identity element ε.
Remark 1.2.10. Of course, there is the problem that no nonidentity element of S^{*} has a inverse. We introduce the following definition to remedy this.
Definition 1.2.11 (free group). Let S be a set. Let S^{-1} be the set of formal inverses of S; i.e., elements written s^{-1} for each $s \in S$. Consider the free monoid $\left(S \cup S^{-1}\right)^{*}$. Quotient by the relation \sim, where \sim is the finest/smallest equivalence relation that satisfies $w a a^{-1} v \sim w v$. We define the free group on S to be $F(S)=\left(S \cup S^{-1}\right)^{*} / \sim$. When $S=\left\{a_{1}, \ldots, a_{n}\right\}, F(S)=F_{n}$. The operation on $F(S)$ is induced concatenation.

Proposition 1.2.12. $F(S)$ is a well-defined group.
Remark 1.2.13. Inverses in $F(S)$ are constructed by reversing the order of a word and replacing each letter with its inverse, like general inverses. For instance,

$$
\left(a b c a^{-1} b^{-1} c\right)^{-1}=c^{-1} b a c^{-1} b^{-1} a^{-1}
$$

Definition 1.2.14 (freely reduced). A word in $\left(S \cup S^{-1}\right)^{*}$ is freely reduced if it has no subwords of the form $a a^{-1}$ or $a^{-1} a$ for $a \in S$.

Proposition 1.2.15. Each equivalence class in $F(S)$ is represented by a unique freely reduced word.
Corollary 1.2.16. If $S \neq \emptyset$, then $F(S)$ is not trivial. Moreover, $F(S)$ is of infinite order.
Lemma 1.2.17. If $|S|=1$, then $F(S) \cong \mathbf{Z}$.
Proof. Since $F(S)=\left\{\ldots, a^{-2}, a^{-1}, \varepsilon=a^{0}, a^{1}, a^{2}, \ldots\right\}$, the result is obvious.
Lemma 1.2.18. If $|S| \geq 2$, then $F(S)$ is nonabelian.
Proof. Let $a, b \in S$ be distinct. Then $a b$ and $b a$ are different freely reduced words, so $a \cdot b \neq b \cdot a$ in $F(S)$.
Proposition 1.2.19. Let G be a group and let $f: S \rightarrow G$ be a function of sets. There is a unique homomorphism $\varphi: F(S) \rightarrow G$ such that $\varphi(s)=f(s)$ for all $s \in S$.

Remark 1.2.20. Proposition 1.2 .19 is the defining property of free groups up to isomorphism. It says that free groups have a basis, S. The proof idea simply exploits the construction $\varphi\left(s_{1}{ }^{\eta_{1}} \cdots s_{n}{ }^{\eta_{n}}\right):=$ $f\left(s_{1}\right)^{\eta_{1}} \cdots f\left(s_{n}\right)^{\eta_{n}}$.

Example 1.2.21. Let's now show that our presentation $\left\langle s, r \mid s^{2}=r^{n}=1, r s=s r^{-1}\right\rangle$ for $D_{2 n}$ is correct. Note first that $\left\langle s, r \mid s^{2}=r^{n}=1, r s=s r^{-1}\right\rangle$ has at most $2 n$ elements: $\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, r^{2} s, \ldots, r^{n-1} s\right\}$. It could have less, if there is some nontrivial way to relate two elements.

Let $S=\{s, r\}$ and let $F=F(S)$. Define $\varphi: F \rightarrow D_{2 n}$ by $\varphi(s)=s$ and $\varphi(r)=r$. By Proposition 1.2.19, φ is a homomorphism. φ is surjective, since s and r in $D_{2 n}$ generate $D_{2 n}$ by Example 1.1.18. Furthermore, φ descends to a homomorphism $\bar{\varphi}: F / \overline{\langle R\rangle} \rightarrow D_{2 n}$, where $R=\left\{s^{2}, r^{n}, r s^{-1} r s\right\}$. Note that $F / \overline{\langle R\rangle}=\langle S \mid R\rangle$. Now, $\bar{\varphi}$ is a surjective homomorphism from a group with at most $2 n$ elements to a group with exactly $2 n$ elements. Therefore, $\bar{\varphi}$ is a bijective homomorphism - an isomorphism.

Remark 1.2.22. The above example generalizes. We see that $G=\langle S \mid R\rangle$ if there is an isomorphism $F(S) / \overline{\langle R\rangle} \rightarrow G$, or equivalently, there is a surjective homomorphism $F(S) \rightarrow G$ with kernel $\overline{\langle R\rangle}$. Identify S with its image under these maps; i.e., S is the set of generators of G, rather than letters.

Proposition 1.2.23. Let $G=\langle S \mid R\rangle$ and let H be a group. Suppose $f: S \rightarrow H$ is a function, and for all $r \in R$, if we substitute $f(s)$ for s in r for all $s \in S$, we get $1 \in H$. Then there is a unique homomorphism $\varphi: G \rightarrow H$ with $\varphi(s)=f(s)$ for all $s \in S$.

Remark 1.2.24. This gives great utility to group presentations. The proof sketch is as follows: by Proposition 1.2.19, f extends to $\widetilde{\varphi}: F(S) \rightarrow H$. Define $\varphi(g)=\widetilde{\varphi}(w)$ where w represents g; i.e., $w \in F(S)$ and under the homomorphism coming from the presentation, $w \mapsto g$. This construction is well-defined, as $\widetilde{\varphi}(r)=1 \in H$ for all $r \in R$. If $G=\langle S \mid \emptyset\rangle$, then for all $g \in G$, there exists $a_{1}, \ldots, a_{k} \in S \cup S^{-1}$ such that $g=a_{1} \cdots a_{k}$. Then, $\varphi(g)=\varphi\left(a_{1} \cdots a_{k}\right)=\varphi\left(a_{1}\right) \cdots \varphi\left(a_{k}\right)$.
Example 1.2.25. Let $G=D_{2 n}=\left\langle r, s \mid s^{2}=r^{n}=1, r s=s r^{-1}\right\rangle$. We wish to construct a homomorphism $\varphi: D_{2 n} \rightarrow \mathbf{Z} / n \mathbf{Z}$ satisfying $\varphi(r)=1$ and $\varphi(s)=0$. Notice that

$$
\begin{aligned}
\varphi\left(r^{n}\right) & =\varphi(r)+\cdots+\varphi(r)=n \varphi(r)=n \cdot 1=0 \\
\varphi\left(s^{2}\right) & =\varphi(s)+\varphi(s)=0+0=0, \text { and } \\
\varphi(1) & =0
\end{aligned}
$$

However,

$$
\begin{aligned}
\varphi(r s) & =\varphi(r)+\varphi(s)=1+0=1 \text { and } \\
\varphi\left(s r^{-1}\right) & =\varphi(s)-\varphi(r)=0-1=-1
\end{aligned}
$$

If $n \geq 3$, then $1 \neq-1$, and we have a contradiction. In this case, no such homomorphism exists.
Example 1.2.26. Consider instead a homomorphism $\varphi: D_{2 n} \rightarrow \mathbf{Z} / 2 \mathbf{Z}$ with $\varphi(r)=0$ and $\varphi(s)=1$. This does work, as

$$
\begin{aligned}
\varphi\left(r^{n}\right) & =0 \\
\varphi\left(s^{2}\right) & =0 \\
\varphi(r s) & =1, \text { and } \\
\varphi\left(s r^{-1}\right) & =1
\end{aligned}
$$

Remark 1.2.27. How do we find presentations? We have the following techniques.

- If G is finite, find a generating set S and relations R such that $\langle S \mid R\rangle$ has at most $|G|$ elements. Then $G=\langle S \mid R\rangle$, as $F(S) / \overline{\langle R\rangle} \rightarrow G$ is a surjective homomorphism. Note that you must be able to count $\langle S \mid R\rangle$ in this approach.
- If we know $G=\langle S \mid R\rangle$ and $M \unlhd G$, then we can find a presentation for G / M.

Example 1.2.27.1. We know $\mathbf{Z}=\langle t \mid \emptyset\rangle$. Since $n \mathbf{Z}=\{k n \mid k \in \mathbf{Z}\}=\langle n\rangle$, t^{n} represents $n \in \mathbf{Z}$, so $\mathbf{Z} / n \mathbf{Z}=\left\langle t \mid t^{n}=1\right\rangle$.
In general, start with your generating set, and set relations to 1 . Suppose $R^{\prime} \subseteq F(S)$ such that R^{\prime} represents a set of generators for M in G (or normal generators). Then $G / M=\left\langle S \mid R \cup R^{\prime}\right\rangle$; i.e., we have a surjective homormorphism $F(S) \rightarrow G / M$ with kernel $\overline{\left\langle R \cup R^{\prime}\right\rangle}$.

- Suppose G has normal subgroup $M \unlhd G$ and $H \leq G$ such that $M \cap H=\{1\}$ and $M H=G$ (i.e., $G=\langle M \cup H\rangle$). Suppose $M=\left\langle S_{1} \mid R_{1}\right\rangle$ and $H=\left\langle S_{2} \mid R_{2}\right\rangle$ which are finite presentations. For every $s \in S_{2} \cup S_{2}^{-1}$ and $t \in S_{1}$, find a word $w_{s, t} \in F\left(S_{1}\right)$ such that sts ${ }^{-1}=w_{s, t}$ in G. Then let $R_{3}=\left\{s t s^{-1} w_{s, t}^{-1} \mid s \in S_{2} \cup S_{2}^{-1}, t \in S_{1}\right\}$. Then $G=\left\langle S_{1} \cup S_{2} \mid R_{1} \cup R_{2} \cup R_{3}\right\rangle$.

Example 1.2.27.2. Let $G=D_{2 n}$. Let $M=\langle r\rangle \cong \mathbf{Z} / n \mathbf{Z}=\left\langle r \mid r^{n}=1\right\rangle$ and $H=\langle s\rangle \cong \mathbf{Z} / 2 \mathbf{Z}=$ $\left\langle s \mid s^{2}=1\right\rangle$. Now declare $s^{-1} r s=r^{-1}$ and $s r s^{-1}=r^{-1}$. (Note that the second is redundant from the other relations.) It follows that $D_{2 n}=\left\langle s, r \mid s^{2}=r^{n}=1, s^{-1} r s=r^{-1}\right\rangle$.

- Suppose $G=\left\langle S_{1} \mid R_{1}\right\rangle$ and $H=\left\langle S_{2} \mid R_{2}\right\rangle$. Let $R_{3}=\left\{s t s^{-1} t^{-1} \mid s \in S_{1}, t \in S_{2}\right\} \subseteq F\left(S_{1} \cup S_{2}\right)$. Note that the elements in $\overline{\left\langle R_{3}\right\rangle}$ are $s t s^{-1} t^{-1}=1$, so $s t=t s$. Then $G \times H=\left\langle S_{1} \cup S_{2} \mid R_{1} \cup R_{2} \cup R_{3}\right\rangle$.

Example 1.2.27.3. Let $\mathbf{Z}=\langle s \mid \emptyset\rangle$ and $\mathbf{Z}=\langle t \mid \emptyset\rangle$. Then $\mathbf{Z} \times \mathbf{Z}=\left\langle s, t \mid s t s^{-1} t^{-1}\right\rangle$.

- We can also attempt to brute force a presentation. Let $S=G \backslash\{1\}$. Let $R=\left\{s_{1} s_{2} \mid s_{1}, s_{2} \in S, s_{1} s_{2}=\right.$ $1\} \cup\left\{s_{1} s_{2} s_{3} \mid s_{1}, s_{2}, s_{3} \in S, s_{1} s_{2} s_{3}=1\right\} \cup \cdots$. That is, write the entire multiplication table. Then $G=\langle S \mid R\rangle$. Therefore, every group has a presentation.

Definition 1.2.28 (Tietze transformations). Tietze transformations are permissible computations that can be applied to a group presentation without changing its isomorphism class. Let $G=\langle S \mid R\rangle$. The Tietze transformations are

1. Adding a generator: let t be a letter such that $t \notin S$. Pick $w \in F(S)$. Then $G=\left\langle S \cup\{t\} \mid R \cup\left\{t w^{-1}\right\}\right\rangle$.
2. Removing an unnecessary generator: pick $s \in S$. Suppose $r \in R$ such that there is exactly one $s^{ \pm 1}$ in r, and further, s appears nowhere else in R. Then $G=\langle S \backslash\{s\} \mid R \backslash\{r\}\rangle$.
3. Adding a true relation: Suppose $w \in \overline{\langle R\rangle}$. Then $G=\langle S \mid R \cup\{w\}\rangle$.
4. Removing a redundant relation: suppose $r \in R$ and $r \in \overline{\langle R \backslash\{r\}\rangle}$. Then $G=\langle S \mid R \backslash\{r\}\rangle$.

Example 1.2.29. One can derive $D_{2 n}=\left\langle a, b \mid a^{2}, b^{2},(a b)^{n}\right\rangle$ from $D_{2 n}=\left\langle r, s \mid r^{n}, s^{2}, s^{-1} r s r\right\rangle$.

1.3 The Symmetric Group

Definition 1.3 .1 (symmetric group). Let X be a set. The symmetric group on X is the set of bijections $X \rightarrow X$ with binary product composition. We write $\operatorname{Sym}(X)$, but if $X \cong\{1,2, \ldots, n\}$, we write S_{n}.

Remark 1.3.2. The following are easily verified.

- For any $X, \operatorname{Sym}(X)$ is a group.
- $\left|S_{n}\right|=n$!, and if $|X|=\infty$, then $|\operatorname{Sym}(X)|=\infty$.
- One may record elements of S_{n} as tables, written as follows:

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 4 & 7 & 2 & 6 & 3 & 1
\end{array}\right) \in S_{7} .
$$

To compose, simply stack tables:

$$
\sigma^{2}=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 2 & 1 & 4 & 3 & 7 & 5
\end{array}\right)
$$

To invert, turn the table upside down and reorder:

$$
\sigma^{-1}=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 4 & 6 & 2 & 1 & 5 & 3
\end{array}\right)
$$

- There is a better notation though; cycle notation. If $a_{1}, \ldots, a_{k} \in\{1, \ldots, n\}$ are distinct, then we write $\tau=\left(a_{1}, \ldots, a_{k}\right) \in S_{n}$, where $\tau\left(a_{i}\right)=a_{i+1}$ for $i \in\{1, \ldots, k-1\}$ and $\tau\left(a_{k}\right)=a_{1}$. For completeness, $\tau(x)=x$ if $x \notin\left\{a_{1}, \ldots, a_{k}\right\}$. We say τ is a cycle. The standard notation for the identity is (1).

Proposition 1.3.3. Every permutation in S_{n} can be expressed as a product of disjoint cycles. This expression is unique up to ordering cycles, cyclically permuting cycle notation, and including trivial cycles.

Remark 1.3.4. There is an algorithm for expressing a permutation as a product of disjoint cycles. If

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 4 & 7 & 2 & 6 & 3 & 1
\end{array}\right)
$$

then $\sigma=(1,5,6,3,7)(2,4)$. Furthermore, $\sigma^{2}=(1,5,6,3,7)(2,4)(1,5,6,3,7)(2,4)=(1,6,7,5,3)(2)(4)=$ $(1,6,7,5,3)$. Also, $\sigma^{-1}=(7,3,6,5,1)(4,2)$.

Example 1.3.5. Here is a few more computations. If $\sigma=(1,6,7,5,3)(2,4)$ and $\tau=(1,2,3,4,5,6,7)$, then $\sigma \circ \tau=(1,6,7,5,3)(2,4)(1,2,3,4,5,6,7)=(1,4,3,2)(5,7,6)$ and $\tau \circ \sigma=(1,7,6)(2,5,4,3)$.

Remark 1.3.6. Note that $(1,2)(2,3) \neq(2,3)(1,2)$, so S_{n} is nonabelian for $n \geq 3$.

1.4 The Quaternion Group

Definition 1.4 .1 (quaternion group). The quaternion group, Q_{8}, is the set $\{1, i, j, k,-1,-i,-j,-k\}$ with multiplication table derived from $i^{2}=j^{2}=k^{2}=-1, i j=k, j i=-k$, and $-1 x=-x$.

Remark 1.4.2. There are much nicer ways to communicate Q_{8}. For example,

$$
Q_{8} \cong\left\langle\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]\right\rangle \leq G L_{2} \mathbf{C}
$$

We traditionally refer to

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \text { and }\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

as i and j, respectively. In addition, $Q_{8}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a b^{-1}=a^{-1}\right\rangle$. This presentation shows that Q_{8} has at most the following elements: $\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}$. Then, there is a homomorphism $\varphi(a)=i$ and $\varphi(b)=j$ which is surjective from $\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a b^{-1}=a^{-1}\right\rangle \rightarrow\langle i, j\rangle$. Thus, these definitions are equivalent.
Remark 1.4.3. The following properties of Q_{8} are easily verified.

- $\left|Q_{8}\right|=8$.
- Q_{8} is nonabelian.
- Observe the following table:

order of an element	number of elements with that order
1	1
2	1
4	6

Contrast that with the same information for the group D_{8} :

order of an element	number of elements with that order
1	1
2	5
4	2

Thus $Q_{8} \not \neq D_{8}$.

1.5 Fields

Definition 1.5.1 (field). A field is a set F with two binary operations, + and \bullet, such that:

1. $(F,+)$ is an abelian group,
2. $(F \backslash\{0\}, \bullet)$ is an abelian group (note 0 is the identity for +), and
3. distributivity holds; i.e., for all $a, b, c \in F, a(b+c)=a b+a c$.

Example 1.5.2. The following are fields.

- \mathbf{Q}, \mathbf{R}, and \mathbf{C}.
- If p is a prime, $\mathbf{Z} / p \mathbf{Z}$.
- $\mathbf{Q}[\sqrt{2}]=\{a+b \sqrt{2} \in \mathbf{R} \mid a, b \in \mathbf{Q}\}$.
- For each prime p and positive $n \in \mathbf{N}$, there is a unique field of order p^{n}. Write $\mathbf{F}_{p^{n}}$.

Definition 1.5.3 (general linear group). For any field F and n a positive integer, define the general linear group $G L_{n} F$, which is the set of $n \times n$ invertible matrices with entries in F. $G L_{n} F$ is a group with matrix multiplication as the operation.
Definition 1.5.4 (special linear group). For any field F and n a positive integer, define the special linear group $S L_{n} F$, which is the set of $n \times n$ matrices with determinant 1 and entries in $F . S L_{n} F$ is a group with matrix multiplication as the operation.
Remark 1.5.5. Recall that a matrix is invertible if and only if it has nonzero determinant.
Remark 1.5.6. Note that linear algebra works the same way over an arbitrary field F as it does over \mathbf{R} or \mathbf{C}, except for orthogonality.
Proposition 1.5.7. If F is a finite field with $|F|=q$, then $\left|G L_{n} F\right|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right)$.
Example 1.5.8. By Proposition 1.5.7, $\left|G L_{3}(\mathbf{Z} / 2 \mathbf{Z})\right|=\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=7 \cdot 6 \cdot 4=168$.

1.6 Homomorphisms and Isomorphisms

Remark 1.6.1. Recall Definitions 1.1 .19 and 1.1 .20 Recall also the approach for showing $G \cong H$ or $G \neq H$ outlined in Remarks $\mathbf{1 . 1 . 2 4}$ and 1.1.25
Example 1.6.2. Recall that $D_{6}=\left\langle r, s \mid r^{3}=s^{2}=1, s r s=r^{-1}\right\rangle$ and S_{3} is the group of permutations on $\{1,2,3\}$, which we write in cycle notation (Remark 1.3.2). Define $\varphi: D_{6} \rightarrow S_{3}$ by $\varphi(r)=(1,2,3)$ and $\varphi(s)=(1,2)$. To check the relations:

$$
\begin{array}{r}
(1,2,3)^{3}=(1) \text { as }(1,2,3) \text { is a } 3 \text {-cycle, } \\
(1,2)^{2}=(1) \text { as }(1,2) \text { is a } 2 \text {-cycle, } \\
(1,2)(1,2,3)(1,2)=(1,3,2)=(1,2,3)^{-1}
\end{array}
$$

Thus φ is a well-defined homomorphism.
Furthermore, φ is surjective, since $\langle(1,2,3)(1,2)\rangle=S_{3}$. To see this, observe that

$$
\begin{aligned}
& (1,2,3)(1,2)(1,2,3)^{-1}=(2,3), \text { and } \\
& (1,2,3)(2,3)(1,2,3)^{-1}=(1,3),
\end{aligned}
$$

giving us 6 distinct elements from $(1,2,3)$ and $(1,2)$. This is a specific result of the more general fact that an n-cycle and a 2 -cycle generate S_{n}.

Since φ is a surjective homomorphism between two groups of order 6, φ is an isomorphism.
Example 1.6.3. Recall from Remark $1 \mathbf{1 . 4 . 2}$ that $Q_{8}=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, a b a^{-1}=b^{-1}\right\rangle$. Define $\varphi: Q_{8} \rightarrow(\mathbf{Z} / 2 \mathbf{Z})^{2}$ by $\varphi(a)=(1,0)$ and $\varphi(b)=(0,1)$. To check the relations:

$$
\begin{aligned}
& 4(1,0)=(4,0)=(0,0), \\
& 2(1,0)=(2,0)=(0,0)=(0,2)=2(0,1), \\
& (1,0)+(0,1)-(1,0)=(0,1)=-(0,1) .
\end{aligned}
$$

Thus φ is a well-defined homomorphism. Surjectivity is obvious, since $\langle(1,0),(0,1)\rangle=(\mathbf{Z} / 2 \mathbf{Z})^{2}$, but φ is not injective, because $\operatorname{ker} \varphi=\left\langle a^{2}\right\rangle$.

Example 1.6.4. One may show that there is a nontrivial homomorphism $D_{8} \rightarrow(\mathbf{Z} / 2 \mathbf{Z})^{2}$. Further, there is an isomorphism $D_{8} \rightarrow H(\mathbf{Z} / 2 \mathbf{Z})$, the Heisenberg group. The Heisenberg group of a field F is

$$
H(F)=\left\{\left.\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \right\rvert\, a, b, c \in F\right\} .
$$

Example 1.6.5. Define $\varphi: H(F) \rightarrow F \times F$ by

$$
\varphi\left(\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\right)=(a, c) .
$$

φ is indeed a homomorphism, as

$$
\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & d & e \\
0 & 1 & f \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a+d & e+a f+b \\
0 & 1 & c+f \\
0 & 0 & 1
\end{array}\right]
$$

φ is clearly surjective and not injective.
Example 1.6.6. Let $U=\{z \in \mathbf{C}| | z \mid=1\}$ be the unit circle. There is a homomorphism $\varphi: \mathbf{R} \rightarrow U$ defined by $\varphi(x)=e^{i x}=\cos x+i \sin x$, with $\operatorname{ker} \varphi=2 \pi \mathbf{Z}$.

1.7 Subgroups

Definition 1.7.1 (induced operation). Let G be a group and let H be a subset of G. If the product on G, $G \times G \rightarrow G$, restricts to $H \times H \rightarrow H$, then we say $H \times H \rightarrow H$ is the induced operation on H.

Definition 1.7.2 (subgroup). H is a subgroup of G, written $H \leq G$, if H is a group under the induced operation.

Example 1.7.3. $\mathbf{Z} \leq \mathbf{Q} \leq \mathbf{R} \leq \mathbf{C}$ under + . Similarly, $\mathbf{Z}^{*} \leq \mathbf{Q}^{*} \leq \mathbf{R}^{*} \leq \mathbf{C}^{*}$ under \cdot.
Remark 1.7.4. For every group $G,\{1\} \leq G$ and $G \leq G$. We call $\{1\}$ the trivial subgroup and G the improper subgroup (if we even want to refer to it at all). We say proper subgroups to exclude the case $G \leq G$.

Example 1.7.5. $\langle r\rangle=\left\{1, r, \ldots, r^{n-1}\right\rangle=\mathbf{Z} / n \mathbf{Z} \leq D_{2 n}$ is a proper subgroup.
Example 1.7.6. For nonexamples, consider $\mathbf{N} \not \leq \mathbf{Z}$. There is an induced operation; + on \mathbf{Z} induces + on \mathbf{N}, but \mathbf{N} is not a group. Usually however, the more common problem is that an induced operation does not exist. For example, $\{r\} \not \leq D_{2 n}$. Finally, $\emptyset \not \leq G$, as \emptyset is not a group as well; it has no identity. Though note that \emptyset does vacuously have an induced operation.

Lemma 1.7.7 (First subgroup criterion). Let G be a group and $H \subseteq G . H \leq G$ if and only if

1. $H \neq \emptyset$,
2. H is closed under taking products in G, and
3. H is closed under taking inverses in G.

Proof. One direction is easy. For the other, assume 1, 2, and 3 hold. Since H is closed under products, H has a well-defined induced product from G. The product on H is associative because this is inherited from G. Since $H \neq \emptyset$, there exists $h \in H$. Since H is closed under inverses, $h^{-1} \in H$ where h^{-1} is the inverse in G. Since H is closed under products, $1_{G}=h h^{-1} \in H .1_{G}$ is also the identity for H. Finally, let $h \in H$. By closure, $h^{-1} \in H$ considering h^{-1} as the inverse of h in G, but h^{-1} is also the inverse in H.

Remark 1.7.8. If $H \leq G$, then $1_{H}=1_{G}$, and for all $h \in H, h^{-1}$ in G is h^{-1} in H.
Proposition 1.7.9 (Second subgroup criterion). Let G be a group and let $H \subseteq G . H \leq G$ if and only if

1. $H \neq \emptyset$, and
2. for all $a, b \in H, a b^{-1} \in H$.

Proposition 1.7.10 (Third subgroup criterion). Let G be a group. Let H be a nonempty finite subset of G. If H is closed under taking products in G, then H is a subgroup.

Definition 1.7.11 (subgroup generated by a subset). Let G be a group and let S be a subset of G. Define $\langle S\rangle$ to be the set of all finite length products of $S \cup S^{-1}$. We call $\langle S\rangle$ the subgroup generated by S.

Remark 1.7.12. $\langle S\rangle$ is the smallest subgroup of G containing S. Furthermore, for all $H \leq G, S \subseteq H$ implies $\langle S\rangle \leq H$, and

$$
\langle S\rangle=\bigcap_{\substack{H \leq G \\ S \subseteq H}} H
$$

Definition 1.7.13 (centralizer). Let G be a group. Let $A \subseteq G$. Define $C_{G}(A)=\left\{g \in G \mid g a g^{-1}=\right.$ a for all $a \in A\}$ to be the centralizer of A in G.

Remark 1.7.14. The equation $g a g^{-1}=a$ is equivalent to the commutativity condition $g a=a g$.
Definition 1.7.15 (center). Define $Z(G)=C_{G}(G)=\left\{g \in G \mid g a g^{-1}=a\right.$ for all $\left.a \in G\right\}$ to be the center of G.

Definition 1.7.16 (normalizer). Define $N_{G}(A)=\left\{g \in G \mid g A g^{-1}=A\right\}$ to be the normalizer of A in G.

Definition 1.7.17 (stabilizer). Let G act on S. Let $s \in S$. Define $G_{s}=\{g \in G \mid g \cdot s=s\}$ to be the stabilizer of s.

Lemma 1.7.18. For any group G, any action on S, and any $s \in S$, the stabilizer G_{s} is a subgroup of G.
Proof. By Lemma 1.7.7 [First subgroup criterion]. G_{s} is not empty since $1 \in G_{s} . G_{s}$ is closed under products since if $g \cdot s=s$ and $h \cdot s=s$, then $(g h) \cdot s=g(h \cdot s)=g \cdot s=s$. Finally, G_{s} is closed under taking inverses since if $g \cdot s=s$, then $g^{-1} \cdot s=g^{-1}(g \cdot s)=\left(g^{1} g\right) \cdot s=1 \cdot s=s$.

Lemma 1.7.19. For any group G and any subset $A \subseteq G, C_{G}(A)$ is a subgroup of G.
Proof. Define $c: G \times G \rightarrow G$ by $c(g, h)=g h g^{-1}$. This is the conjugation action of G on G, sometimes written h^{g}. To see this is an action, observe that $c(1, h)=1 h 1^{-1}=h$, and if $a, b \in G$ and $h \in G$, then $c(a, c(b, h))=c\left(a, b h b^{-1}\right)=a b h b^{-1} a^{-1}$, and $c(a b, h)=a b h(a b)^{-1}=a b h b^{-1} a^{-1}$. Thus c is a group action.

Now observe that $C_{G}(\{a\})=G_{a}$, so by Lemma 1.7.18, $C_{G}(\{a\})$ is a subgroup of G.
Next, for any set A,

$$
C_{G}(A)=\bigcap_{a \in A} C_{G}(\{a\})
$$

Using the fact that arbitrary intersections of subgroups are subgroups, $C_{G}(A)$ is a subgroup of G.
Corollary 1.7.20. The center $Z(G)=C_{G}(G)$ is a subgroup of G.
Lemma 1.7.21. For any group G and $A \subseteq G, N_{G}(A)$ is a subgroup of G.
Proof. For $g \in G$, let $g A g^{-1}=\left\{g a g^{-1} \mid a \in A\right\}$. This defines a group action $\alpha: G \times \mathcal{P}(G) \rightarrow \mathcal{P}(G)$ defined by $\alpha(g, A)=g A g^{-1}$. Recall that $N_{G}(A)=\left\{g \in G \mid g A g^{-1}=A\right\}$, so $N_{G}(A)=G_{A}$ under the conjugation action on subsets. By Lemma 1.7.18, $N_{G}(A)$ is a subgroup of G.

Example 1.7.22. In $D_{2 n}, D_{2 n}$ acts on $\{1, \ldots, n\}$. By Example 1.11 .16 to come or by direct computation, the stabilizer of $1,\left(D_{2 n}\right)_{1}=\{1, s\}$ as these are the only actions that fix 1 .

Example 1.7.23. To determine the centralizers of a group, often one simply makes a list. In $D_{2 n}, C_{D_{2 n}}(r)=$ $\langle r\rangle$. If $n=2 m$, then $C_{D_{2 n}}(s)=\left\langle s, r^{m}\right\rangle$, as $s r^{m} s=r^{-m}=r^{m}$, while if $n=2 m+1, C_{D_{2 n}}(s)=\langle s\rangle$.

Example 1.7.24. If $n=2 m$, then $Z\left(D_{2 n}\right)=\left\langle r^{m}\right\rangle$, as it is the intersection of $C_{D_{2 n}}(r)$ and $C_{D_{2 n}}(s)$. If $n=2 m+1$, then $Z\left(D_{2 n}\right)=\{1\}$.

Example 1.7.25. If G is abelian and $A \subseteq G$, then $Z(G)=G, C_{G}(A)$, and $N_{G}(A)=G$.
Example 1.7.26.

$$
N_{D_{2 n}}(\langle s\rangle)= \begin{cases}\langle s\rangle & \text { if } n \text { is odd } \\ \left\langle s, r^{m}\right\rangle & \text { if } n \text { is even. }\end{cases}
$$

$N_{D_{2 n}}(\langle r\rangle)=D_{2 n}$.
Example 1.7.27. $C_{S_{n}}(\sigma)$ is complicated. If $|A|<\infty, \sigma$ has a finite disjoint cycle decomposition. It is easier to see that if $|A| \geq 3$, then $Z(\operatorname{Sym}(A))=\{1\}$.

Definition 1.7.28 (cyclic subgroup). Let G be a group. Let $x \in G$. Then $\langle x\rangle=\left\{x^{n} \mid n \in \mathbf{N}\right\}$ is the cyclic subgroup generated by x.

Definition 1.7.29 (cyclic group). If there is $x \in G$ such that $G=\langle x\rangle$, then we say that G is cyclic.
Remark 1.7.30. Cyclic groups are abelian.
Lemma 1.7.31. If $x \in G$ and $H=\langle x\rangle$, then $|H|=|x|$.
Proof. Observe that $H=\left\{1, x, \ldots, x^{n-1}\right\}$ if $|x|=n$, and $H=\left\{\ldots, x^{-1}, 1, x, \ldots\right\}$ if $|x|=\infty$. Notice that H is at most countable by definition.

Lemma 1.7.32. If $x^{n}=1$ and $x^{m}=1$, then $x^{d}=1$ where $d=\operatorname{gcd}(m, n)$.
Proof. If $d=\operatorname{gcd}(m, n)$, then there exist $a, b \in \mathbf{Z}$ such that $d=a m+b n$. Simply compute:

$$
x^{d}=x^{a m+b n}=\left(x^{m}\right)^{a}\left(x^{n}\right)^{b}=1 .
$$

Theorem 1.7.33 (The classification of cyclic groups). Let G be cyclic; $G=\langle x\rangle$ for some x.

1. $|G|$ is a positive integer or countable infinity.
2. Cyclic groups are isomorphic if and only if they have the same order.

Proof. Note that 1. is obvious. For 2., there are two cases:

- Case One: If $|G|=\infty$, then define $\varphi: \mathbf{Z} \rightarrow G$ by $\varphi(k)=x^{k}$. See that φ is a homomorphism by power rules: $x^{k} x^{\ell}=x^{k+\ell}$. Furthermore, φ is surjective, by definition of $\langle x\rangle$. Also, φ is injective. If $\varphi(k)=1$, then $x^{k}=1$. If $k \neq 0$, then $|x| \leq|k|<\infty$, a contradiction. Thus $k=0$, so $\operatorname{ker} \varphi=\{0\}$. Hence, $G \cong \mathbf{Z}$, and any two cyclic subgroups of order ∞ are isomorphic via an isomorphism factored through \mathbf{Z}.
- Case Two: If $|G|=n<\infty$, then defined $\varphi: \mathbf{Z} / n \mathbf{Z} \rightarrow G$ by $\varphi([k])=x^{k}$. To see φ is well-defined, assume k and ℓ are two representatives of $[k]$. Then n divides $k-\ell$, so there exists $m \in \mathbf{Z}$ such that $k-\ell=m n$. Then $x^{k}=x^{m n+\ell}=\left(x^{n}\right)^{m} x^{\ell}=x^{\ell}$. So φ is well-defined. Now, φ is a homomorphism as $\varphi([k]+[\ell])=\varphi([k+\ell])=x^{k+\ell}=x^{k} x^{\ell}=\varphi([k]) \varphi([\ell])$. Also φ is surjective by definitions of $\langle x\rangle$, and φ is injective, since if $\varphi([k])=1$, then $x^{k}=1$. As $x^{k}=1$ and $x^{n}=1, x^{d}=1$ where $d=\operatorname{gcd}(k, n)$ by Lemma 1.7.32. Since $n=|x|, n=d$. Thus, n divides k, so $[k]=[0]$ and $\operatorname{ker} \varphi=\{[0]\}$. Therefore $G \cong \mathbf{Z} / n \mathbf{Z}$, and any two cyclic subgroups of order n are isomorphic via an isomorphism factored through $\mathbf{Z} / n \mathbf{Z}$.

Lemma 1.7.34. Suppose G is a group and $x \in G$.

1. If $|x|=\infty$, then for all $a \in \mathbf{Z} \backslash\{0\},\left|x^{a}\right|=\infty$.
2. If $|x|=n<\infty$, then for all $a \in \mathbf{Z},\left|x^{a}\right|=n / \operatorname{gcd}(n, a)$. If a divides n and $a>0$, then $\operatorname{gcd}(n, a)=a$, so $\left|x^{a}\right|=n / a$.
Proof. This follows straight from the definitions.
Example 1.7.35. In $\mathbf{Z} / 6 \mathbf{Z},|1|=6,|2|=3,|3|=2,|4|=3$, and $|5|=6$.
Lemma 1.7.36. Suppose $H=\langle x\rangle$.
3. If $|x|=\infty$, then $H=\left\langle x^{a}\right\rangle$ if and only if $a= \pm 1$.
4. If $|x|=n<\infty$, then $H=\left\langle x^{a}\right\rangle$ if and only if $\operatorname{gcd}(a, n)=1$. In particular, the number of choices of x^{a} where $H=\left\langle x^{a}\right\rangle$ is $\varphi(n)=\mid\{k \mid 1 \leq k \leq n$ and $\operatorname{gcd}(k, n)=1\} \mid$, the Euler φ-function.
Proof. Follows from Lemma 1.7 .34
Example 1.7.37. Let $G=\mathbf{Z} / 24 \mathbf{Z}$. We see that $\varphi(24)=\varphi(8) \varphi(3)$, as $\operatorname{gcd}(8,3)=1$, and $\varphi(8) \varphi(3)=4 \cdot 2=8$. The explicit elements that work to generate $G=\mathbf{Z} / 24 \mathbf{Z}$ are $1,5,7,11,13,17,19$, and 23 , of which there are eight.
Theorem 1.7.38. Suppose $H=\langle x\rangle$. Then
5. Every subgroup of H is cyclic.
6. If $K \leq H$, then $K=\left\langle x^{d}\right\rangle$ where d is the smallest positive integer with $x^{d} \in K$, unless $K=\{0\}$.
7. If $|H|=\infty$, then there is a bijective correspondence between subgroups of H and the nonnegative integers, given by $n \mapsto\left\langle x^{n}\right\rangle$.
8. If $|H|=n<\infty$, then there is a bijective correspondence between subgroups of H and the positive divisors of n, given by $a \mapsto\left\langle x^{a}\right\rangle$, where a divides n and $n>0$.
Proof. Here, we only prove 1. Let $H=\langle x\rangle$ and $K \leq H$ with $K \neq\{0\}$. Let $d \in \mathbf{Z}$ be the smallest positive integer such that $x^{d} \in K$. Clearly $\left\langle x^{d}\right\rangle \subseteq K$. We would like to show $K \subseteq\left\langle x^{d}\right\rangle$. Let $g \in K$. Then $g \in H$, and so there is $n \in \mathbf{Z}$ such that $g=x^{n}$. Divide n by d. By the division algorithm, there exist $p, q \in \mathbf{Z}$ such that $n=d p+r$ and $0 \leq r<d$. As $x^{n} \in K$ and $x^{d} \in K$, and $r=n-p d$, we have $x^{r}=x^{n}\left(x^{d}\right)^{-p} \in K$. If $r \neq 0$, then $r<d$ contradicts the fact that d is minimal. Thus $r=0$, so $n=d p$, and $x^{n}=\left(x^{d}\right)^{p}$. Thus $x^{n} \in\left\langle x^{d}\right\rangle$. Therefore $K=\left\langle x^{d}\right\rangle$, and every subgroup of H is cyclic.

Remark 1.7.39. Given a finite group, one can

- enumerate all the cyclic subgroups,
- enumerate the subgroups generated by small subsets, and
- prove that larger subsets generate the entire group.

Example 1.7.40. Consider the group $\mathbf{Z} / 6 \mathbf{Z}$. We know that the divisors of 6 are $1,2,3$, and 6 , so we may draw a lattice of subgroups like so:

The lines are inclusions, and the number of elements decreases as you go down. Note that this is exactly the lattice of divisibility by Theorem $\mathbf{1 . 7 . 3 8}$ part 4.

Note that the dotted line is optional, as it can be deduced from the other lines.
Example 1.7.41. Consider $\mathbf{Z} / 8 \mathbf{Z}$. The divisors of 8 are $1,2,4$, and 8 . Since 8 is a power of a prime, the lattice is uninteresting:

Indeed, in the case that $G=\mathbf{Z} / p^{k} \mathbf{Z}$ where p is prime, the lattice of subgroups of G is just a tower.
Example 1.7.42. In general, the lattice can be seen to be cubes of high dimensions. If our group is $\mathbf{Z} / 30 \mathbf{Z}$, then as $30=2 \cdot 3 \cdot 5$, we have

which is a cube. The lattice for $\mathbf{Z} / 360 \mathbf{Z}$ is also a cube, since $360=8 \cdot 9 \cdot 5$. The difference is that the edges of the cube will be subdivided into nodes since $8=2^{3}$ and $9=3^{2}$; that is, "viewing from only one angle" and not "subdividing faces" so as to keep the picture tidier,

Example 1.7.43. What about the lattice of subgroups of a general group; i.e., what if G is not cyclic? Let $G=S_{3}$. The cyclic subgroups of S_{3} are $\langle(1,2,3)\rangle,\langle(1,2)\rangle,\langle(1,3)\rangle,\langle(2,3)\rangle$, and $\langle\emptyset\rangle$. Observe that all set of two elements where neither is trivial and not inverses of each other will generate S_{3}. All subgroups of S_{3} are cyclic, even though S_{3} is nonabelian.

Example 1.7.44. Consider $D_{8}=\langle r, s\rangle$. The cyclic subgroups are $\langle r\rangle,\langle s\rangle,\langle s r\rangle,\left\langle s r^{2}\right\rangle,\left\langle s r^{3}\right\rangle,\left\langle r^{2}\right\rangle$, and $\{1\}$. The noncyclic subgroups are $\left\langle r^{2}, s\right\rangle \cong(\mathbf{Z} / 2 \mathbf{Z})^{2}$ and $\left\langle r^{2}, s r\right\rangle$. This turns out to be exhaustive.

Example 1.7.45. The lattice of subgroups of Q_{8} is

Proposition 1.7.46. Let $\varphi: G \rightarrow H$ be a homomorphism of groups. Then

1. φ respects identities, inverses, and exponents,
2. $\operatorname{im} \varphi$ is a subgroup of H, and
3. $\operatorname{ker} \varphi$ is a subgroup of G.

Lemma 1.7.47. Let $\varphi: G \rightarrow H . \operatorname{ker} \varphi=\{1\}$ if and only if φ is injective.
Proof. First, if φ is injective, then at most one element is in $\operatorname{ker} \varphi$. Since $1 \in \operatorname{ker} \varphi$ by Proposition 1.7.46, $\operatorname{ker} \varphi=\{1\}$.

Now, let $g, h \in G$ and assume $\varphi(g)=\varphi(h)$. Then $\varphi(g) \varphi(h)^{-1}=1$, so $\varphi\left(g h^{-1}\right)=1$, and $g h^{-1} \in \operatorname{ker} \varphi=$ $\{1\}$, so $g h^{-1}=1$, and thus $g=h$.

1.8 Quotients

Definition 1.8 .1 (group quotient by kernel). Suppose $\varphi: G \rightarrow H$ is a homomorphism with kernel K. Then the set of fibers of φ (point preimages) forms a group, denoted G / K.

Definition 1.8.2 (fiber). Let $\varphi: G \rightarrow H$. We define a fiber $x \in G / K$ to be a subset of G such that $x=\varphi^{-1}(\{h\})$ for some $h \in H$.

Remark 1.8.3. The product on G / K is defined by $\varphi^{-1}(\{g\}) \varphi^{-1}(\{h\})=\varphi^{-1}(\{g h\})$. Note that $\varphi^{-1}(\{g\})$ determines a fiber uniquely. Thus the product is well-defined.

Example 1.8.4. Define $\varphi: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $\varphi(x, y)=x$. This is a homomorphism, as it is linear. Let $K=\operatorname{ker} \varphi=\{(0, y) \mid y \in \mathbf{R}\}$. Then \mathbf{R} / K is illustrated by the following picture:

One can observe that $\varphi^{-1}(\{n\})=\{(n, y) \mid y \in \mathbf{R}\} \in \mathbf{R}^{2} / K$, and $\mathbf{R}^{2} / K \cong \mathbf{R}$.
Lemma 1.8.5. Let G be a group. Suppose \sim is an equivalence relation on G such that for all $a, b, c, d \in G$, if $a \sim b$ and $c \sim d$, then $a c \sim b d$. Set $N=\{a \in G \mid a \sim 1\}$.

1. N is a normal subgroup of G, and
2. $a \sim b$ if and only if $a N=b N$.

Remark 1.8.6. We want to define a product on G / \sim by $[a][c]=[a c]$. The hypotheses in Lemma 1.8.5 ensure this.

Definition 1.8.7 (normal subgroup). N is a normal subgroup of G, written $N \unlhd G$, if for all $g \in G$, $g N g^{1}=N$.

Definition 1.8.8 (coset). Let $H \leq G$. The left coset of H by $g \in G$ is the set $g H=\{g x \mid x \in H\}$. The right coset $H g$ is defined similarly, but not often used.

Remark 1.8.9. If $\varphi: G \rightarrow H$ is a homomorphism, then \sim on G defined by $a \sim b$ if and only if $\varphi(a)=\varphi(b)$ is an equivalence relation that satisfies the hypotheses in Lemma 1.8.5.

Proof of Lemma 1.8.5, part 1. We need to show N as defined is a normal subgroup. For $N \leq G, 1 \in N$ since $1 \sim 1$. Next, let $a \in N$. We show that $a^{-1} N$. Since $a \sim 1$ and $a^{-1} \sim a^{-1}$, we have $a^{-1} a \sim a^{-1} 1$, so $a^{-1} \sim 1$, and thus $a^{-1} \in N$. Finally, let $a, b \in N$. We show $a b \in N$. Since $a \sim 1$ and $b \sim 1$, we get $a b \sim 1 \cdot 1=1$. Thus $a b \in N$, and $N \leq G$ as claimed.

To see that N is normal, let $g \in G$ and let $a \in N$. Then $a \sim 1, g \sim g$, and $g^{-1} \sim g^{-1}$, so we see that $g a g^{-1} \sim g 1 g^{-1}=1$. Thus, $g a g^{-1} \in N$, and hence $g N g^{-1} \subseteq N$. For the other inclusion, switch g with g^{-1} to see that $g^{-1} N g \subseteq N$, and therefore $N=g\left(g^{-1} N g\right) g^{-1} \subseteq g N g^{-1}$. Thus, $g N g^{-1}=N$, so $N \unlhd G$, as desired.

Lemma 1.8.10. If $\varphi: G \rightarrow H$ is a homomorphism, then $\operatorname{ker} \varphi \unlhd G$.
Proof. We know $\operatorname{ker} \varphi \leq G$ by Proposition 1.7.46. Let $g \in G$ and let $a \in \operatorname{ker} \varphi$. Since $\varphi(a)=1$, we see that

$$
\varphi\left(g a g^{-1}\right)=\varphi(g) \varphi(a) \varphi(g)^{-1}=1 .
$$

Thus for all $g \in G, g \operatorname{ker} \varphi g^{-1} \subseteq \operatorname{ker} \varphi$. It the follows that $g \operatorname{ker} \varphi g^{-1}=\operatorname{ker} \varphi$ by the argument in the proof of Lemma 1.8.5 switch g and g^{-1}.

Proposition 1.8.11. Let $H \leq G$. Let $x, y \in G$. The following are equivalent.

1. x and y are in the same coset of H,
2. $x \in y H$,
3. $y \in x H$,
4. $x H=y H$,
5. $y^{-1} x \in H$, and
6. $x^{-1} y \in H$.

Remark 1.8.12. Cosets are orbits (Definition 1.11.6), which are equivalence classes that partition a group. They are hence either completely disjoint or completely equal.

Proposition 1.8.13. Let $N \leq G$. The following are equivalent.

1. $N \unlhd G$; i.e., for all $g \in G, g N g^{-1}=N$,
2. $N_{G}(N)=G$,
3. for all $g \in G, g N=N g$, and
4. for all $g \in G, g N g^{-1} \subseteq N$.

Lemma 1.8.14. Suppose $G=\langle S\rangle$ and $N \leq G$ where $N=\langle T\rangle$. Suppose for all $s \in S$ and $t \in T$, sts ${ }^{-1} \in N$ and $s^{-1} t s \in N$. Then $N \unlhd G$.

Proof. Use condition 4 in Proposition 1.8.13 Let $g \in G$ and let $a \in N$. We wish to show $g a g^{-1} \in N$. Since $g=s_{1}{ }^{p_{1}} \cdots s_{n}{ }^{p_{n}}$ and $a=t_{1}{ }^{q_{1}} \cdots t_{m}{ }^{q_{m}}$,

$$
\begin{aligned}
\operatorname{gag}^{-1} & =s_{1}{ }^{p_{1}} \cdots s_{n}{ }^{p_{n}} t_{1}{ }^{q_{1}} \cdots t_{m}{ }^{q_{m}} s_{n}{ }^{-p_{n}} \cdots s_{1}{ }^{-p_{1}} \\
& =s_{1}{ }^{p_{1}} \cdots s_{n}{ }^{p_{n}} t_{1}{ }^{q_{1}} s_{n}{ }^{-p_{n}} \cdots s_{n}{ }^{p_{n}} t_{m}{ }^{q_{m}} s_{n}{ }^{-p_{n}} \cdots s_{1}{ }^{-p_{1}}
\end{aligned}
$$

$$
=\cdots
$$

Proceed via induction.

Proof of Lemma 1.8.5, part 2. Suppose $a, b \in G$ and $a \sim b$. We need to show $a N=b N$, so we proceed via a double inclusion argument. Let $g \in a N$. Let $x \in N$ such that $g=a x$. Notice that $g=b b^{-1} a x=b\left(b^{-1} a x\right)$. Since $a \sim b, b^{-1} a \sim 1$, so $b^{-1} a \in N$. Hence $b\left(b^{-1} a x\right) \in b N$. Thus $a N \subseteq b N$. But by symmetry, $a N \supseteq b N$, so $a N=b N$.

In the other direction, suppose $a N=b N$. Then $b a^{-1} \in N$, so $b^{-1} a \sim 1$, and thus $a \sim b$, as desired.
Remark 1.8.15. Lemma 1.8 .5 is handy for motivating normal subgroups; it says we should consider normal subgroups and quotients rather than equivalence relations, though equivalence relations may at first seem more natural.

Definition 1.8.16 (quotient group). Let G be a group and $N \unlhd G$ a normal subgroup. Define the quotient $\operatorname{group} G / N=\{g N \mid g \in G\}$. Define a product $G / N \times G / N \rightarrow G / N$ by $(g N)(h N)=(g h) N$.

Definition 1.8.17 (canonical projection). Let $N \unlhd G$. Define the canonical projection $\pi: G \rightarrow G / N$ by $\pi(g)=g N$.

Lemma 1.8.18. The product on G / N is well-defined.
Proof. Let $a, b, c, d \in G$ and assume $a N=b N$ and $c N=d N$. We need to show $(a c) N=(b d) N$.
Since $a N=b N$ and $c N=d N$, we know that $a^{-1} b, c^{-1} d \in N$. We can therefore show $(a c)^{-1}(b d) \in N$. To see thism we have $c^{-1} a^{-1} b d=c^{-1} a^{-1} b c c^{-1} d$. Since $a^{-1} b \in N$ and $c^{-1} a^{-1} b c$ is a conjugation of $a^{-1} b$, $c^{-1} a^{-1} b c \in N$ because N is normal. Since $c^{-1} d \in N$, the product $\left(c^{-1} a^{-1} b c\right)\left(c^{-1} d\right) \in N$, as desired.

Theorem 1.8.19. G / N is a group under the product that descended from G, and $\pi: G \rightarrow G / N$ is a surjective homomorphism with $\operatorname{ker} \pi=N$.

Proof. G / N is associative because π is a homomorphism and G is a group:

$$
\begin{aligned}
(g N h N) k N & =(\pi(g) \pi(h)) \pi(k) \\
& =\pi(g h) \pi(k) \\
& =\pi(g h k) \\
& =\pi(g) \pi(h k) \\
& =\pi(g)(\pi(h) \pi(k)) \\
& =g N(h N k N)
\end{aligned}
$$

The identity in G / N is $1 N$, which follows from the definition. Finally, for inverses, for all $g N \in G / N$, if $h N=g^{-1} N$, then $h N$ is the inverse for $g N$.
π is trivially surjective, and by the fact that if $g, h \in G$, then

$$
\pi(g h)=(g h) N=(g N)(h N)=\pi(g) \pi(h)
$$

π is a homomorphism. To show the claim that ker $\pi=N$, use a double inclusion argument. First, if $g \in N$, then $\pi(g)=g N=1 N$, since $1^{-1} g \in N$. Thus $g \in \operatorname{ker} \pi$. On the other hand, if $g \in \operatorname{ker} \pi$, then $\pi(g)=1 N$, so $g N=1 N$ and thus $1^{-1} g \in N$, so $g \in N$.

Corollary 1.8.20. Every normal subgroup of a group is the kernel of some homomorphism.
Remark 1.8.21. A priori, the computation $\pi(g h)=\pi(g) \pi(h)$ above shows that $\pi: G \rightarrow G / N$ is a homomorphism of magmas.

Definition 1.8.22 (magma). A magma is a set with a binary product.
乙 Warning! 1.8.23. If $N \unlhd H$ and $H \unlhd G$, that it is not necessarily the case that $N \unlhd G$.
Example 1.8.24. Consider the case that $G=D_{8}$ and $H=\left\langle r^{2}, s\right\rangle$. Here $H \unlhd G$. If $N=\langle s\rangle$, then $N \unlhd H$, as H is abelian. But $N \nexists G$, and $r s r^{-1}=r^{2} s \notin N$.

Example 1.8.25. Let $G=D_{8}$ and $N=\left\langle r^{2}\right\rangle$. Then $N \unlhd G$. Hence

$$
\begin{aligned}
G / N & =\{g N \mid g \in G\} \\
& =\left\{\left\{1, r^{2}\right\},\left\{r, r^{3}\right\},\left\{s, s r^{2}\right\},\left\{s r, s r^{3}\right\}\right\} \\
& =\{[1],[r],[s],[s r]\} \\
& =\{1 N, r N, s N, s r N\} .
\end{aligned}
$$

We can write the multiplication table of G / N.

G / N	1	r	s	$s r$
1	1	r	s	$s r$
r	r	1	$s r$	s
s	s	$s r$	1	r
$s r$	$s r$	s	r	1

By observation, $D_{8} /\left\langle r^{2}\right\rangle \cong(\mathbf{Z} / 2 \mathbf{Z})^{2}$.

1.9 The Index of a Group and Lagrange's Theorem

Theorem 1.9.1 (Lagrange's Theorem). Let G be a group and H a subgroup of G. Then $|H|$ divides $|G|$, and the number of left cosets of H in G is $|G| /|H|$.

Remark 1.9.2. $g H=\{g h \mid h \in H\}$ is the orbit of g under the action of H on G on the right by multiplication (Definition 1.11.6). Cosets/orbits partition the group/set, and cosets are in bijection with each other.

Definition 1.9 .3 (index). Let G be a group and $H \leq G$. The index of H in G is the number of left cosets of H in G, written $|G: H|$ or $[G: H]$.

Remark 1.9.4. Thus Theorem 1.9.1 [Lagrange's Theorem] states that $[G: H]=|G| /|H|$.
2 Warning! 1.9.5. Theorem 1.9.1 [Lagrange's Theorem] is not true for monoids (recall Definition 1.2.8! The fact that cosets are in bijection relies on the existence of inverses.

Corollary 1.9.6. Let G be a group and let $x \in G$. Then $|x|$ divides $|G|$. If $|G|<\infty$, then $x^{|G|}=1$.
Proof. Observe that $|x|=|\langle x\rangle|$. By Theorem 1.9 .1 [Lagrange's Theorem], $|\langle x\rangle|$ divides $|G|$.
Corollary 1.9.7. If p is prime and G is a group with order p, then G is cyclic and therefore $G \cong \mathbf{Z} / p \mathbf{Z}$.
Proof. Since p is prime, $p \geq 2$, so $G \backslash\{1\} \neq \emptyset$. Let $x \in G \backslash\{1\}$. Consider $\langle x\rangle \leq G$. Since $x \neq 1,|\langle x\rangle|>1$. By Theorem 1.9.1 [Lagrange's Theorem], $|\langle x\rangle|$ divides $|G|=p$, a prime. Therefore $|\langle x\rangle|=p$, so $\langle x\rangle=G$, and hence G is cyclic. By Theorem $\mathbf{1 . 7 . 3 3}$ [The classification of cyclic groups], $G \cong \mathbf{Z} / p \mathbf{Z}$.

Remark 1.9.8. The strongest possible converse to Theorem $\mathbf{1 . 9 . 1}$ [Lagrange's Theorem] fails; there is a group of order 12 with no subgroup of order 6 . Let

$$
A_{4}=\left\{\sigma \in S_{4} \mid \text { the cycle decomposition of } \sigma \text { is }(\bullet, \bullet, \bullet),(\bullet, \bullet)(\bullet, \bullet) \text {, or }(1)\right\}
$$

A_{4} is a group, and $\left|A_{4}\right|=12$ via counting arguments. To see that A_{4} is a group, you can look at even/odd permutations (Definitions 1.12 .35 and 1.12 .36), or we can look at permutation matrices; e.g., $(1,2,3)$ corresponds to

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

We have homomorphisms $\varphi: S_{n} \rightarrow G L_{n} F$ and det : $G L_{n} F \rightarrow\{-1,1\}$. Then A_{4} is the kernel of the composition of these homomorphisms, and thus a group. One can check that any two 3 -cycles that are not
inverses of each other, or any 3 -cycle and any cycle of the form $(\bullet, \bullet)(\bullet, \bullet)$ generate A_{4}. Show that each form can generate 7 elements, and therefore by Theorem 1.9.1 [Lagrange's Theorem], all of A_{4}.

We can therefore enumerate all subgroups by generating sets. If our generating set includes two 3-cycles or a 3 -cycle and $(\bullet, \bullet)(\bullet, \bullet)$, then it will be A_{4}. If not, they will be too small; i.e., A_{4} only has subgroups of order $1,2,3,4$, and 12 . No subgroup of order 6 exists.

There are, however, special case converses: Theorem 1.9.11 [Cauchy's Theorem] and Theorem 1.9.12 [Sylow's Theorem] are two such, to come.

Theorem 1.9.9. If $H \leq G$ and $[G: H]=2$, then $H \unlhd G$.
Proof. Cosets of H in G are $H=1 H$ and $G \backslash H=x H$ for any $x \notin H$. Thus we can classify the cosets by membership of H alone and need not reference left multiplication at all. Therefore, for all $x \in G, x H=H x$, and by Proposition 1.8 .13 , condition $3, H$ is normal in G.

Remark 1.9.10. We can use Theorem 1.9 .9 to prove the claims in Remark $\mathbf{1 . 9 . 8}$ as well. Suppose $H \leq A_{4}$ and that $|H|=6$. Then by Theorem $1.9 .9, H \unlhd A_{4}$. There exists at least one $(a, b, c) \in H$. Since H is normal, for all $\sigma \in A_{4}, \sigma(a, b, c) \sigma^{-1} \in H$, but $\sigma(a, b, c) \sigma^{-1}=(\sigma(a), \sigma(b), \sigma(c))$. Therefore we can conclude that in a normal subgroup of A_{4}, if we have one 3 -cycle, then we have many, and thus we can deduce that $|H| \geq 7$, a contradiction.

Theorem 1.9.11 (Cauchy's Theorem). If $|G|<\infty$ and p is a prime such that p divides $|G|$, then there exists $x \in G$ such that $|x|=p$ (and thus $p=|\langle x\rangle|$ for $\langle x\rangle \leq G$).

Theorem 1.9.12 (Sylow's Theorem). If p is prime, $a \in \mathbf{Z},|G|<\infty$, p^{a} divides $|G|$, and p^{a+1} does not divide $|G|$, then there exists $H \leq G$ such that $|H|=p^{a}$.

Furthermore, if G is abelian, then if n divides $|G|$, then G does have a subgroup of order n.
Additionally, if $|G|=p^{n}$ for a prime p, then there is a subgroup of any order that divides p^{n}.
Definition 1.9 .13 (concatenation set). If $H, K \leq G$, then define $H K=\{h k \mid h \in H, k \in K\}$.
2 Warning! 1.9.14. In general, $H K \not \leq G$ and $H K \neq\langle H \cup K\rangle$.
Example 1.9.15. Let $G=S_{3}, H=\langle(1,2)\rangle$, and $K=\langle(2,3)\rangle$. Then $H K=\{(1),(1,2),(2,3),(1,2,3)\}$. Note that $|H K|=4$, and 4 does not divide $\left|S_{3}\right|=6$, so by Theorem 1.9.1 [Lagrange's Theorem], $H K \not \leq S_{3}$.

Remark 1.9.16. Notice that

$$
H K=\bigcup_{h \in H} h K
$$

Lemma 1.9.17. Let $H, K \leq G$. Then

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

Proof. By Remark 1.9 .16

$$
|H K|=\left|\bigcup_{h \in H} h K\right|=x|K|
$$

where x is the number of distinct cosets $h K$ for $h \in H$. There are $|H|$ formal expressions $h K$, but given $h_{1} \in H$, how many $h_{2} \in H$ exist such that $h_{1} K=h_{2} K$?

Suppose $h_{1} K=h_{2} K$. This is the case if and only if $h_{2}{ }^{-1} h_{1} \in K$, if and only if $h_{2}{ }^{-1} h_{1} \in H \cap K$, if and only if $h_{1}(H \cap K)=h_{2}(H \cap K)$, if and only if $h_{2} \in h_{1}(H \cap K)$.

Thus, the number of choices of h_{2} satisfying above is $\left|h_{1}(H \cap K)\right|=|H \cap K|$. Therefore, $x=|H| /|H \cap K|$. This is an integer by Theorem $\mathbf{1 . 9 . 1}$ [Lagrange's Theorem]. Therefore, the result is shown.

Lemma 1.9.18. Let $H, K \leq G$ and suppose $H \leq N_{G}(K)$. We say that H normalizes K. (By right-left symmetry, K can normalize H too.) If H normalizes K, then $H K \leq G$.

Proof. By Lemma 1.7.7 [First subgroup criterion].
$1=1 \cdot 1 \in H K$, so $H K \neq \emptyset$.
Next, suppose $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. We wish to show $h_{1} k_{1} h_{2} k_{2} \in H K$. Observe

$$
\begin{aligned}
h_{1} k_{1} h_{2} k_{2} & =h_{1} h_{2} h_{2}^{-1} k_{1} h_{2} k_{2} \\
& =\left(h_{1} h_{2}\right)\left(\left(h_{2}^{-1} k_{1} h_{2}\right) k_{2}\right) .
\end{aligned}
$$

Since $H \leq N_{G}(K), h_{2}^{-1} k_{1} h_{2} \in K$. Since H and K are groups, $h_{1} h_{2} \in H$ and $\left(h_{2}{ }^{-1} k_{1} h_{2}\right) k_{2} \in K$. Thus, $h_{1} k_{1} h_{2} k_{2} \in H K$.

Finally, suppose $h \in H$ and $k \in K$. Then

$$
(h k)^{-1}=k^{-1} h^{-1}=h^{-1} h k^{-1} h^{-1}=h^{-1}\left(h k^{-1} h^{-1}\right) \in H K
$$

since $h^{-1} \in H, k^{-1} \in K$ as H and K are groups, and $h k^{-1} h^{-1} \in K$ as $H \leq N_{G}(K)$.
Thus, $H K \leq G$, as claimed.

1.10 The Isomorphism Theorems

Theorem 1.10.1 (The First Isomorphism Theorem). Suppose $\varphi: G \rightarrow H$ is a homomorphism. Then

$$
G / \operatorname{ker} \varphi \cong \varphi(G)
$$

Proof. The proof will follow from the following stronger result in Lemma 1.10.2,
Lemma 1.10.2. Suppose $\varphi: G \rightarrow H$ is a homomorphism. Then let $K=\operatorname{ker} \varphi$, and we have a commutative diagram

There is an isomorphism $\bar{\varphi}: G / K \rightarrow \varphi(G)$ such that the diagram commutes; i.e., $\varphi=i \circ \bar{\varphi} \circ \pi$.
Proof. Define $\bar{\varphi}: G / K \rightarrow \varphi(G)$ by $\bar{\varphi}(a K)=\varphi(a)$. This is well-defined, as if $a K=b K$, then $\bar{\varphi}(a K)=\varphi(a)$ and as $a^{-1} b \in K, \varphi(a)=\varphi(a) \varphi\left(a^{-1} b\right)=\varphi\left(a a^{-1} b\right)=\varphi(b)=\bar{\varphi}(b K)$.

Furthermore, $\bar{\varphi}$ is a homomorphism, since $\bar{\varphi}(a K b K)=\overline{\operatorname{varphi}}(a b K)=\varphi(a) \varphi(b)=\bar{\varphi}(a K) \bar{\varphi}(b K)$. Also, $\bar{\varphi}$ is surjective by construction, and injective because $\operatorname{ker} \bar{\varphi}=\{e\}$.

All that remains follow from the fact that indeed

$$
(i \circ \bar{\varphi} \circ \pi)(a)=(i \circ \bar{\varphi})(a K)=i(\varphi(a))=\varphi(a)
$$

Remark 1.10.3. If you know all normal subgroups of G, all subgroups of H, and all isomorphisms between quotients of G and subgroups of H, then you know all homomorphisms $G \rightarrow H$. For instance, one could find all homomorphisms from Q_{8} to D_{8}, of which there are many.

Example 1.10.4. Suppose p and q are prime numbers. Suppose that $\varphi: \mathbf{Z} / p \mathbf{Z} \rightarrow \mathbf{Z} / q \mathbf{Z}$ is a homomorphism. Then either φ is trivial, i.e., constantly 0 , or $p=q$ and φ is an isomorphism. To see this, note that the only subgroups of $\mathbf{Z} / p \mathbf{Z}$ are $\{0\}$ and $\mathbf{Z} / p \mathbf{Z}$, by Theorem $\mathbf{1 . 9 . 1}$ [Lagrange's Theorem]. Similarly for q. There are two cases for $\operatorname{ker} \varphi$. If $\operatorname{ker} \varphi=\mathbf{Z} / p \mathbf{Z}$, then φ is trivial. If $\operatorname{ker} \varphi=\{0\}$, then φ is an embedding; i.e., it is injective. Thus $\mathbf{Z} / q \mathbf{Z}$ has a subgroup isomorphic to $\mathbf{Z} / p \mathbf{Z}$. Since $p>1, \varphi(\mathbf{Z} / p \mathbf{Z}) \neq\{0\}$, so $p=q$ and therefore $\varphi(\mathbf{Z} / p \mathbf{Z})=\mathbf{Z} / q \mathbf{Z}$, so φ is surjective too.
Theorem 1.10.5 (The Second Isomorphism Theorem). Suppose $A, B \leq G$ and $A \subseteq N_{G}(B)$. Then $A B \leq G$, $B \unlhd A B, A \cap B \unlhd A$, and

$$
A B / B \cong A / A \cap B
$$

Proof. First, note that $A B \leq G$ follows from Lemma 1.9.18, and the normal subgroup claims are easy. Next, define $\varphi: A \rightarrow A B / B$ by $\varphi(a)=a B$. Then φ is well-defined, and φ is a homomorphism since

$$
\varphi\left(a_{1} a_{2}\right)=a_{1} a_{2} B=a_{1} B a_{2} B=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)
$$

Notice that φ is surjective. To see this, let $(a b) B \in A B / B$; then $a \in A, b \in B$, and $\varphi(a)=a B=(a b) B$, since $(a b)^{-1} a=b^{-1} \in B$.

Finally, we show that $\operatorname{ker} \varphi=A \cap B$. To see this, let $x \in A \cap B$. Then $\varphi(x)=x B=1 B$, since $1^{-1} x=x \in B$. On the other hand, let $x \in \operatorname{ker} \varphi \subseteq A$. Also $\varphi(x)=x B=1 B$, so $1^{-1} x \in B$, and thus $x \in A \cap B$.

Therefore, by Theorem $\mathbf{1 . 1 0 . 1}$ [The First Isomorphism Theorem], $A /(A \cap B) \cong A B / B$.
Example 1.10.6. Let $G=\mathbf{R}^{3}$ with addition. Let $A=\operatorname{span}_{\mathbf{R}}\left(e_{1}, e_{3}\right)$ and $B=\operatorname{span}_{\mathbf{R}}\left(e_{2}, e_{3}\right)$. See that $A+B=\{a+b \mid a \in A, b \in B\}=\operatorname{span}_{\mathbf{R}}\left(e_{1}, e_{2}, e_{3}\right)=\mathbf{R}^{3}$. (Note that $A+B$ is the additive notation version of $A B$.) Also see that $A \cap B=\operatorname{span}_{\mathbf{R}}\left(e_{3}\right)$. Thus

$$
\begin{aligned}
& A+B / B=\mathbf{R}^{3} / \operatorname{span}_{\mathbf{R}}\left(e_{2}, e_{3}\right)=\mathbf{R}, \text { and } \\
& A / A \cap B=\operatorname{span}_{\mathbf{R}}\left(e_{1}, e_{3}\right) / \operatorname{span}_{\mathbf{R}}\left(e_{3}\right)=\mathbf{R}
\end{aligned}
$$

For an explicit isomorphism, map A to $(A+B) / B$ by $x e_{1}+y e_{2} \mapsto\left(x e_{1}+y e_{2}\right)+B$. This is a homomorphism, and the kernel is $A \cap B$. Thus, by Theorem 1.10.1 [The First Isomorphism Theorem], we see that $A /(A \cap B) \cong(A+B) / B$.

Theorem 1.10.7 (The Third Isomorphism Theorem). Suppose $H, K \unlhd G$ with $K \leq H$. Then $K \unlhd H$ and $H / K \unlhd G / K$. Furthermore,

$$
\frac{(G / K)}{(H / K)} \cong G / H
$$

Proof. The fact that $K \unlhd H$ is obvious. Next, suppose $h K \in H / K$ and $g K \in G / K$. To see $H / K \unlhd G / K$, see that

$$
(g K)(h K)(g K)^{-1}=\left(g h g^{-1}\right) K \in H / K
$$

because $g h g^{-1} \in H$ since $H \unlhd G$.
Finally, to show $(G / K) /(H / K) \cong G / H$, define $\varphi: G / K \rightarrow G / H$ be $\varphi(g K)=g H . \varphi$ is well-defined, but not necessarily obviously so. To see that it is, suppose $g_{1} K=g_{2} K$. Then $g_{2}{ }^{-1} g_{1} \in K$. Since $K \subseteq H$, $g_{2}{ }^{-1} g_{1} \in H$, so $g_{1} H=g_{2} H$. Now, φ is obviously surjective, and one can show that $\operatorname{ker} \varphi=H / K$. Via an application of Theorem $\mathbf{1 . 1 0 . 5}$ [The Second Isomorphism Theorem], $(G / K) /(H / K) \cong G / H$, as desired.

Example 1.10.8. Let $G=\mathbf{Z} / 8 \mathbf{Z}, N=\langle 4\rangle$, and $H=\langle 2\rangle$. Then $H / N \unlhd G / N$, and $(G / N) /(H / N) \cong G / H$. We know that

$$
\begin{aligned}
& G / N=\{N, 1+N, 2+N, 3+N\} \text { and } \\
& H / N=\{N, 2+N\} .
\end{aligned}
$$

Thus

$$
\frac{(G / N)}{(H / N)}=\{H / N,(1+N)+H / N\}
$$

where $(1+N)+H / N=\{1+N, 3+N\}=\{\{1,5\},\{3,7\}\}$. Also, see that $G / H=\{H, 1+H\}$.

We are done as there is a unique group of order 2, but suppose we want to build an explicit isomorphism. We wish to define $\varphi: G / N \rightarrow G / H$ by $\varphi(g N)=g H$. Why should this be well-defined? See that if $g N=h N$, then we claim $g H=h H$. Indeed, we know $h^{-1} g \in N$ and $N \leq H$, so $h^{-1} g \in H$, and therefore $g H=h H$, as desired.

Note that $\varphi(g N)=g H=\pi_{H}(g)$, where π_{H} is the quotient projection $\pi_{H}: G \rightarrow G / H$. This leads to the following result:

Lemma 1.10.9. Let $\Phi: G \rightarrow H$ be a homomorphism. Let $N \unlhd G$. Define $\varphi: G / N \rightarrow H$ by $\varphi(g N)=\Phi(g)$. φ is well-defined if and only if $N \leq \operatorname{ker} \Phi$. This is the universal property of a quotient.

Proof. Assume $N \leq \operatorname{ker} \Phi$. Let $g, h \in G$ such that $g N=h N$. We need to show that $\varphi(g N)=\varphi(h N)$. Since $h^{-1} g \in N \leq \operatorname{ker} \Phi, \Phi\left(h^{-1} g\right)=1_{H}$, so $\Phi(h)^{-1} \Phi(g)=1_{H}$, and therefore $\Phi(g)=\Phi(h)$, as desired.

The other direction follows via proof by contrapositive.
Theorem 1.10.10 (The Fourth Isomorphism Theorem). Let G be a group and $N \unlhd G$. There is a bijection between

$$
\{H \mid H \leq G, N \leq H\} \leftrightarrow\{K \mid K \leq G / N\}
$$

where $H \mapsto H / N$. Moreover, this bijection respects all the structure of the subgroup lattice; i.e.,

- $H_{1} \leq H_{2}$ if and only if $H_{1} / N \leq H_{2} / N$,
- if so, $\left[H_{2}: H_{1}\right]=\left[H_{2} / N: H_{1} / N\right]$,
- $H_{1} \unlhd H_{2}$ if and only if $H_{1} / N \unlhd H_{2} / N$,
- if so, $H_{2} / H_{1} \cong\left(H_{2} / N\right) /\left(H_{1} / N\right)$,
- $\left(H_{1} \cap H_{2}\right) / N=\left(H_{1} / N\right) \cap\left(H_{2} / N\right)$,
- $\left\langle H_{1} \cup H_{2}\right\rangle / N=\left\langle\left(H_{1} / N\right) \cup\left(H_{2} / N\right)\right\rangle$.

Example 1.10.11. Let $G=\left\langle a, b \mid a^{4}=1, b^{4}=1, b a b^{-1}=a^{-1}\right\rangle$. One can check that as a set, we have $G=\left\{a^{i} b^{j} \mid i, j \in\{0,1,2,3\}\right\}$, and $|G|=16$. This is a twisted semidirect product (Definition ??) of $\mathbf{Z} / 2 \mathbf{Z}$ and $\mathbf{Z} / 4 \mathbf{Z}$. Let $N=\left\langle a^{2} b^{2}\right\rangle$. To see that $N \unlhd G$, observe that

$$
\begin{aligned}
a a^{2} b^{2} a^{-1} & =a^{2} b b^{2} b^{-1}=a^{2} b^{2} \\
a^{-1} a^{2} b^{2} a & =a^{2} b^{2}, \\
b a^{2} b^{2} b^{-1} & =a^{2} b^{-2}=a^{2} b^{2}, \text { and } \\
b^{-1} a^{2} b^{2} b & =a^{2} b^{2},
\end{aligned}
$$

so $a^{2} b^{2}$ is central. Next, $G / N=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{4}=1, \bar{b}^{4}=1, \bar{b} \bar{a} \bar{b}^{-1}=\bar{a}^{-1}, \bar{a}^{2} \bar{b}^{2}=1\right\rangle$. Realizing the relation $\bar{a}^{2} \bar{b}^{2}=1$ as $\bar{a}^{2}=\bar{b}^{-2}$ and then as $\bar{a}^{2}=\bar{b}^{2}$, we can see that $G / N \cong Q_{8}$ (Remark 1.4.2).

The lattice is

where the numbers on each edge indicate the index (Definition 1.9.3 of the subgroup.
By Theorem $\mathbf{1 . 1 0 . 1 0}$ [The Fourth Isomorphism Theorem], we have an incomplete lattice

The lattice is incomplete because we only see subgroups that contain $a^{2} b^{2}$. For instance, $\langle a\rangle$ does not appear.
Also, for instance, $(G / N) /\left\langle\bar{a}^{2}\right\rangle \cong(\mathbf{Z} / 2 \mathbf{Z})^{2} \cong G /\left\langle a^{2}, a^{2} b^{2}\right\rangle$.

1.11 Group Actions

Definition 1.11.1 (group action). Let G be a group and let A be a set. An action of G on A is a function $G \times A \rightarrow A,(g, a) \mapsto g a$, such that

1. for all $g, h \in G$ and $a \in A, g(h a)=(g h) a$, and
2. for all $a \in A, 1 a=a$.

Remark 1.11.2. Group actions are like scalar multiplication in vector spaces, but for groups.
Example 1.11.3. $D_{2 n}$ acts on the vertices $\{1, \ldots, n\}$ by labeling vertices of the regular n-gon and applying isometries. $r k=k+1$ if $k<n$ while $r n=1$, and $s k=n+2-k(\bmod n)$.

Example 1.11.4. Let G act on A. Let $g \in G$. Define $\sigma_{g}: A \rightarrow A$ by $\sigma_{g}(a)=g a$. Note that σ_{g} is a permutation. Indeed, since $\sigma_{g} \circ \sigma_{h}=\sigma_{g h}$, one has $\sigma_{g}^{-1}=\sigma_{g^{-1}}$. Thus, σ_{g} is a bijection.

In fact, $\varphi: G \rightarrow \operatorname{Sym}(A)$ defined by $\varphi(g)=\sigma_{g}$ is a homomorphism. This is called the permutation representation of the action. We can conclude from Example $\mathbf{1 . 1 1 . 3}$ that there is a homomorphism φ : $D_{2 n} \rightarrow S_{n}$ defined by $\varphi(r)=(1,2,3, \ldots, n)$ and $\varphi(s)=(1)(2, n)(3, n-1) \cdots(a, b)$, where

$$
(a, b)= \begin{cases}\left(\frac{n}{2}, \frac{n}{2}+1\right) & \text { if } n \text { is even } \\ \left(\frac{n+1}{2}, \frac{n+1}{2}+1\right) & \text { if } n \text { is odd }\end{cases}
$$

Lemma 1.11.5. Actions of G on A are in bijection with homomorphisms $G \rightarrow \operatorname{Sym}(A)$. Moreover, sending the action to the permutation representation (Example 1.11.4) is the bijection.

Proof. Let $\varphi: G \rightarrow \operatorname{Sym}(A)$ be any homomorphism. Define a function $G \times A \rightarrow A$ by $g \cdot a=(\varphi(g))(a)$. This is an action.

Definition 1.11.6 (orbit). Let G act on A and let $a \in A$. The orbit of a is $G a=\{g a \mid g \in G\}$.
Definition 1.11.7 (transitive action). Let G act on A. The action is transitive if there is only one orbit; i.e., for all $a \in A, G a=A$.

Definition 1.11 .8 (kernel of a group action). Let G act on A. The kernel of the action is the subset $\{g \in G \mid$ for all $a \in A, g \cdot a=a\}$.

Definition 1.11.9 (faithful action). Let G act on A. The action is faithful if its kernel is $\{1\}$.

Remark 1.11.10. The kernel of the group action is the same as the kernel of the associated homomorphism. That is, if $\alpha: G \times A \rightarrow A$ is a group action, then the kernel of α is the kernel of the permutation representation $\varphi: G \rightarrow \operatorname{Sym}(A)$ corresponding to α.

Example 1.11.11. Let G be any group. Let A be any set. Let $g a=a$ for all $g \in G$ and $a \in A$. This is a group action, since $g(h a)=a=(g h) a$ and $1 \cdot a=a$. It is called the trivial action. It is not transitive nor faithful.

Example 1.11.12. S_{n} acts on $\{1, \ldots, n\}$ by $\sigma \cdot n=\sigma(n)$. To see this, $(1) \cdot n=n$, and $\sigma(\tau \cdot n)=(\sigma \tau) \cdot n$. Since $(1, k) \cdot 1=k$ for all k, it follows that the action is transitive. It is also faithful, since the only way to send $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$ without shuffling is the identity function.

Example 1.11.13. Let F be a field and let V be an F-vector space. If F^{*} is the group $F \backslash\{0\}$ under multiplication, then F^{*} acts on V by scalar multiplication. This action is faithful. If $\mathbf{v} \neq 0$, then $s \cdot \mathbf{v}=\mathbf{v}$ implies $s=1$. The action is transitive if and only if $\operatorname{dim} V=1$.

Example 1.11.14. $G L_{n} F$ acts on F^{n} be matrix-vector multiplication on the left. This action is not transitive. The orbits are $\{0\}$ and $F^{n} \backslash\{0\}$. This action is faithful.

Example 1.11.15. Let $A=G$. Define $g \cdot h=g h$; i.e., the action is the group operation. We call this the left regular action. It is both faithful and transitive.

We get a homomorphism $\varphi: G \rightarrow \operatorname{Sym}(G)$ which is an embedding (i.e., it is an injective homomorphism onto its image). Cancellation makes the action faithful, and thus an embedding. This is Corollary $\mathbf{1 . 1 1 . 1 9}$ [Cayley's Theorem], to come.

Example 1.11.16. Group actions can be visualized with graphs. For instance, consider D_{8} acting on $\{1,2,3,4\}$ as the following graph.

If there is an action where everything loops back, the action is not faithful. If your graph is connected, the action is transitive. Hence D_{8} acting on $\{1,2,3,4\}$ is faithful and transitive.

Theorem 1.11.17. Let G be a group and let H be a subgroup of G. Let $A=\{x H \mid x \in G\}$. Let G act on A by left multiplication; i.e., $g \cdot(x H)=(g x) H$.

1. This action is transitive.
2. The stabilizer of $1 H$ is $G_{1 H}=H$.
3. The kernel of this action is

$$
\bigcap_{a \in G} a H a^{-1}
$$

Proof. For the first claim, let $a H, b H \in A$. We need to produce a $g \in G$ such that $g a H=b H$. This occurs if and only if $b^{-1} g a \in H$. Let $g=b a^{-1}$; then $b^{-1} g a=b^{-1} b a^{-1} a=1 \in H$.

For the second claim, notice that $H \subseteq G_{1 H}$, since $h \cdot 1 H=h H=1 H$, as $1^{-1} h=h \in H$. It remains to see that $G_{1 H} \subseteq H$. Suppose $g \in G_{1 H}$, so $g \cdot 1 H=1 H$, and therefore $g H=1 H$, so $1^{-1} g=g \in H$, as desired.

For the third claim, we first show that $G_{a H}=a H a^{-1}$. Indeed, $g \in a H a^{-1}$ if and only if there exists an $h \in H$ such that $g=a h a^{-1}$. If so, $a h a^{-1} \cdot a H=a h H=a H$, so $g \in G_{a H}$. Conversely, $g a H=a H$ if and
only if $a^{-1} g a \in H$. Thus there exists $h \in H$ such that $a^{-1} g a=h$, so $g=a h a^{-1}$, and therefore $g \in a H a^{-1}$. Thus $G_{a H}=a H^{-1}$, and therefore the kernel of the action is

$$
\bigcap_{a \in G} G_{a H}=\bigcap_{a \in G} a H a^{-1}
$$

as claimed.
Remark 1.11.18. Given any transitive action G acting on A, the action of G on A is the same as the action of G on $\left\{g G_{a} \mid g \in G\right\}$.
Corollary 1.11.19 (Cayley's Theorem). Let G be a group. There is an injective group homomorphism $G \rightarrow \operatorname{Sym}(G)$. Furthermore, if $|G|=n$, then G embeds in S_{n}.
Proof. The group G acts on $G /\{1\} \leq G$ by left multiplication. Let $\pi: G \rightarrow \operatorname{Sym}(G)$ be the permutation representation of the action (Example 1.11.4). This means that for all $g \in G, \pi(g) \in \operatorname{Sym}(G)$ such that $(\pi(g))(a)=g \cdot a$. By Theorem 1.11.17 with $H=\{1\}$ and $A=G /\{1\}$,

$$
\operatorname{ker} \pi=\bigcap_{a \in G} a\{1\} a^{-1}=\{1\}
$$

Example 1.11.20. Consider D_{8}. The permutation representation of D_{8} acting on itself is

$$
\pi(r)=\left(1, r, r^{2}, r^{3}\right)\left(s, r s, r^{2} s, r^{3} s\right)
$$

and

$$
\pi(s)=(1, s)\left(r, r^{3} s\right)\left(r^{2}, r^{2} s\right)\left(r^{3}, r s\right)
$$

Therefore by Corollary 1.11 .19 [Cayley's Theorem], $\langle\pi(r), \pi(s)\rangle \cong D_{8} \leq \operatorname{Sym}\left(D_{8}\right) \cong S_{8}$.
Remark 1.11.21. One can check that $D_{8} \leq S_{n}$ for all $n \geq 4$, but $Q_{8} \leq S_{n}$ for all $n \geq 8$, and $Q_{8} \not \leq S_{7}$.
Example 1.11.22. The group \mathbf{Z} acting on itself has permutation representation $\pi: \mathbf{Z} \rightarrow \operatorname{Sym}(\mathbf{Z})$ such that $(\pi(1))(n)=n+1$.

Corollary 1.11.23. If $|G|=n, H \leq G$, and $|G: H|=p$, where p is the smallest prime dividing n, then $H \unlhd G$.

Proof. Let $\pi: G \rightarrow S_{p}$ be the permutation representation. Let $A=\{g H \mid g \in G\}$. We have $|A|=p$ by Theorem 1.9.1 [Lagrange's Theorem]. Furthermore, $\pi: G \rightarrow S_{p} \cong \operatorname{Sym}(A)$. Let $K=\operatorname{ker} \pi$. See that

$$
|G: K|=|G: H| \cdot|H: K|=p k
$$

for $k \in \mathbf{Z}$. By Theorem $\mathbf{1 . 1 0 . 1}$ [The First Isomorphism Theorem], G / K is isomorphic to a subgroup of S_{p}, and $|G / K|=p k$. So $|G / K|$ divides $\left|S_{p}\right|$, so $p k$ divides p !, and hence k divides $(p-1)$!. Since

$$
|G|=|G:\{1\}|=|G: K| \cdot|K:\{1\}|=p k \cdot|K|=n
$$

k divides n as well. By hypothesis, p is the smallest prime dividing n, so k must be 1 . Since $k=|H: K|$, $K=H$, and thus $H=\operatorname{ker} \pi$. Therefore $H \unlhd G$, as desired.

Corollary 1.11.24 (Alternate proof of Theorem 1.9.9). If G is finite, $H \leq G$, and $|G: H|=2$, then $H \unlhd G$.

Example 1.11.25. If $|G|=21, H \leq G$, and $|H|=7$, then $H \unlhd G$, since $|G: H|=3$ which is the smallest prime dividing 21.

Theorem 1.11.26 (The Orbit Stabilizer Theorem). Let G act on A. Let $x \in A$. The orbit Gx has size equal to $|G: G x|$.

Proof. Let $H=G x$, and let $B=\{g H \mid g \in G\}$. Define a function $\varphi: B \rightarrow G x$ where $\varphi(g H)=g x$. To see this function is well-defined, suppose $a H=b H$, so that $b^{-1} a \in H=G x$. Since H is a group, $a^{-1} b \in H$. Now

$$
\varphi(a H)=a x=a\left(a^{-1} b x\right)=\left(a a^{-1} b\right) x=b x=\varphi(b H)
$$

so φ is well-defined.
It is enough to show that φ is a bijection, for then $|B|=|G: G x|$. We will first show that φ is a surjection. Let $y \in G x$. There exists g such that $y=g x$, so $y=\varphi(g H)$. Now see that φ is an injection. Suppose $a H$ and $b H$ are in B such that $\varphi(a H)=\varphi(b H)$. So $a x=b x$, and therefore $b^{-1} a x=x$, so $b^{1} a=1 \in G x=H$. Thus $a H=b H$, as we needed to show.

Corollary 1.11.27. Let $s \in G$, and let $[s]$ be the conjugacy class of s. The size of the conjugacy class $|[s]|$ is equal to $\left|G: C_{G}(s)\right|$. Furthermore, let $S \subseteq G$. The size of the conjugation orbit $|G S|$ is equal to $\left|G: N_{G}(S)\right|$. If G is finite, then $|[s]|$ and $|G S|$ divide $|G|$.

1.12 Series and Extensions

Definition 1.12 .1 (simple). A group G is simple if the only normal subgroups of G are G itself and $\{1\}$.
Example 1.12.2. If p is a prime number, then $\mathbf{Z} / p \mathbf{Z}$ is simple. Conversely, if G is abelian, then G is isomorphic to $\mathbf{Z} / p \mathbf{Z}$ for some prime p; i.e., all abelian simple groups are of this form.

Example 1.12.3. Let F be a field. Let $N=\left\{c I_{n} \mid c \in F, c \neq 0\right\} \leq G L_{n} F$. Define the projective special linear group $P S L_{n} F:=S L_{n} F /\left(S L_{n} F \cap N\right)$ (recall Definition 1.5.4). Except in the cases where $n=2$ and $|F| \in\{2,3\}, P S L_{n} F$ is a nonabelian simple group. If $|F|=\infty$, then $\left|P S L_{n} F\right|$ may be infinite.

Definition 1.12.4 (alternating group). We define the alternating group of order n to be the subgroup of S_{n} consisting of even permutations.

Example 1.12.5. If $n \geq 5$, then A_{n} is a nonabelian simple group of order $n!/ 2$. See Remark $\mathbf{1 . 1 2 . 3 9}$ and Lemma 1.12 .40 to come.

Remark 1.12.6. If $N \unlhd G$, one can study G by studying N and G / N, as we will unpack soon. Thus, simple groups are quickly understood via this approach, due to the lack of normal subgroups.

Definition 1.12.7 (subnormal series). Let G be a group. A subnormal series for G is a list of subgroups

$$
\{1\}=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{n-1} \unlhd G_{n}=G .
$$

Definition 1.12.8 (composition series). Given a group G, a subnormal series of G is called a composition series if G_{i+1} / G_{i} is simple for all $i \in\{0, \ldots, n-1\}$.

Definition 1.12 .9 (composition factor). Given a composition series of a group G, the quotients G_{i+1} / G_{i} are called composition factors.

Definition 1.12.10 (solvable series). Given a group G, a subnormal series of G is called a solvable series if G_{i+1} / G_{i} is abelian for all $i \in\{0, \ldots, n-1\}$.

Definition 1.12 .11 (solvable group). If a group G has a solvable series, then we say that G is solvable.
Theorem 1.12.12 (Jordan-Hölder Theorem). If G is finite, then G has a composition series. If G has a composition series, then any two composition series for G have the same length and composition factors with multiplicity.

Proof. For the first claim, we induct on the order of G. The base case $|G|=1$ is trivial, as is $|G|=2$. For the inductive step, if G is simple, we are done. Otherwise, G has a proper nontrivial normal subgroup, and G / N has order smaller than G, by Theorem 1.9.1 [Lagrange's Theorem].

For the second claim, again proceed via induction on $|G|$, with base case $|G|=1$ trivial. For the inductive step, take two composition series of G,

$$
\{1\} \unlhd H_{1} \unlhd H_{2} \unlhd \cdots \unlhd H_{k-1} \unlhd H_{k}=G
$$

and

$$
\{1\} \unlhd K_{1} \unlhd K_{2} \unlhd \cdots \unlhd K_{\ell-1} \unlhd K_{\ell}=G
$$

By the inductive hypothesis, the theorem is true for the groups H_{k-1} and $K_{\ell-1}$. If $H_{k-1}=K_{\ell-1}$, we are done. Otherwise, let $L=H_{k-1} \cap K_{\ell-1}$. The group L has order small enough to invoke the inductive hypothesis and therefore has a composition series

$$
\{1\} \unlhd L_{1} \unlhd L_{2} \unlhd \cdots \unlhd L_{t-1} \unlhd L_{t}=L
$$

Observe that by Theorem 1.10 .5 [The Second Isomorphism Theorem], we realize the isomorphism $H_{k-1} / L=H_{k-1} /\left(H_{k-1} \cap K_{\ell-1}\right) \cong G / K_{\ell-1}$, so $L=H_{k-1} \cap K_{\ell-1}$ is a maximal subgroup of H_{k-1}, and therefore

$$
\{1\} \unlhd L_{1} \unlhd L_{2} \unlhd \cdots \unlhd L_{t-1} \unlhd L_{t}=L \unlhd H_{k-1}
$$

is a composition series. By the inductive hypothesis, the composition series

$$
\{1\} \unlhd H_{1} \unlhd H_{2} \unlhd \cdots \unlhd H_{k-1}
$$

and

$$
\{1\} \unlhd L_{1} \unlhd L_{2} \unlhd \cdots \unlhd L_{t-1} \unlhd L_{t}=L \unlhd H_{k-1}
$$

have the same length and composition factors with multiplicity, so $t+1=k$. Arguing similarly, the composition series

$$
\{1\} \unlhd K_{1} \unlhd K_{2} \unlhd \cdots \unlhd K_{\ell-1}
$$

and

$$
\{1\} \unlhd L_{1} \unlhd L_{2} \unlhd \cdots \unlhd L_{t-1} \unlhd L_{t}=L \unlhd K_{\ell-1}
$$

have the same length and composition factors with multiplicity, so $t+1=\ell$, and therefore $k=\ell$. Finally, if we consider the composition series obtained by appending G to the aforementioned composition series:

$$
\begin{gathered}
\{1\} \unlhd H_{1} \unlhd H_{2} \unlhd \cdots \unlhd H_{k-1} \unlhd G, \\
\{1\} \unlhd L_{1} \unlhd L_{2} \unlhd \cdots \unlhd L_{t}=L \unlhd H_{k-1} \unlhd G, \\
\{1\} \unlhd K_{1} \unlhd K_{2} \unlhd \cdots \unlhd K_{\ell-1} \unlhd G, \text { and } \\
\{1\} \unlhd L_{1} \unlhd L_{2} \unlhd \cdots \unlhd L_{t}=L \unlhd K_{\ell-1} \unlhd G,
\end{gathered}
$$

we see that the first two composition series still have the same length and composition factors with multiplicity, as do the last two composition series. Composition series 2 and 4 are the same except for the ending, but by Theorem $\mathbf{1 . 1 0 . 5}$ [The Second Isomorphism Theorem],

$$
H_{k-1} / L=H_{k-1} / H_{k-1} \cap K_{\ell-1} \cong G / K_{\ell-1}
$$

and

$$
K_{\ell-1} / L=K_{\ell-1} / H_{k-1} \cap K_{\ell-1} \cong G / H_{k-1}
$$

so composition series 2 and 4 have the same length and composition factors with multiplicity. Therefore by transitivity, composition factors 1 and 3 have the same length and composition factors with multiplicity, as we wished to show.

Example 1.12.13. One composition series for D_{8} is

$$
\{1\} \unlhd\left\langle r^{2}\right\rangle \unlhd\langle r\rangle \unlhd D_{8}
$$

The composition factors are $\mathbf{Z} / 2 \mathbf{Z}$, listed three times. Since $\mathbf{Z} / 2 \mathbf{Z}$ is abelian, the above series is a solvable series. A different composition series for D_{8} is

$$
\{1\} \unlhd\langle s\rangle \unlhd\left\langle s, r^{2}\right\rangle \unlhd D_{8}
$$

but of course the composition factors are still $\mathbf{Z} / 2 \mathbf{Z}$, as they should be, by Theorem $\mathbf{1 . 1 2 . 1 2}$ [JorderHölder Theorem]. A solvable, but not composition, series for D_{8} is

$$
\{1\} \unlhd\langle r\rangle \unlhd D_{8}
$$

The quotient $\langle r\rangle /\{1\} \cong \mathbf{Z} / 4 \mathbf{Z}$ is not a simple group, so the series is not a composition series.
Example 1.12.14. Trivially, if G is simple, then

$$
\{1\} \unlhd G
$$

is a composition series. The group G, with multiplicity 1 , is the only composition factor of G.
Example 1.12.15. The group \mathbf{Z} has no composition series. To see this, we must have at the tail

$$
\cdots p \mathbf{Z} \unlhd \mathbf{Z}
$$

but $p \mathbf{Z} \cong \mathbf{Z}$, so after finitely many steps we are no closer to finishing the series. Alternatively, one can argue that since \mathbf{Z} is abelian, all its composition factors must be abelian, and since the order of \mathbf{Z} is the product of the order of its composition factors by Theorem 1.9.1 [Lagrange's Theorem], we would have $|\mathbf{Z}|<\infty$.

On the other hand,

$$
\{0\} \unlhd \mathbf{Z}
$$

is a solvable series, so \mathbf{Z} is solvable.
Lemma 1.12.16. If G is nonabelian and simple, then G is not solvable.
Proof. Suppose G were solvable; i.e., there exists a solvable series

$$
\{1\} \unlhd G_{1} \unlhd \cdots \unlhd G_{n-1} \unlhd G .
$$

Since G is simple, $G_{n-1}=\{1\}$ or $G_{n-1}=G$. If $G_{n-1}=\{1\}$, then $G /\{1\}=G$ is nonabelian, so the series was not solvable. If $G_{n-1}=G$, then there exists a shorter solvable series; use that instead. Iterate; by finiteness the contradiction is reached.

Example 1.12.17. Recall the special linear group from Definition 1.5 .4 and the general linear group from Definition 1.5.3. We have $S L_{2} \mathbf{R} \unlhd G L_{2} \mathbf{R} . S L_{2} \mathbf{R}$ is infinite and has a composition series, but $G L_{2} \mathbf{R}$ is not solvable, nor does it have a composition series. The composition series of $S L_{2} \mathbf{R}$ is

$$
\left\{I_{2}\right\} \unlhd\left\langle\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\right\rangle \unlhd S L_{2} \mathbf{R} .
$$

Example 1.12.18. The free group of order $2, F_{2}$, is not solvable and has no composition series. Observe that $\mathbf{Z} / p \mathbf{Z} \leq F_{2}$ since $\left\langle x, y \mid x^{p}=1, y=1\right\rangle \cong \mathbf{Z} / p \mathbf{Z}$, so F_{2} would have infinitely many composition factors. One can argue that since F_{2} has A_{5} as a quotient, and quotients of solvable groups are solvable, since A_{5} is not solvable, F_{2} cannot be.

Remark 1.12.19. Let G be a group. The following facts are easily verified.

1. If $N \unlhd G$ and N and G / N are solvable, then G is solvable.
2. If G is solvable, then for all $H \leq G, H$ is solvable, and for all $N \unlhd G, G / N$ is solvable.
3. Let $|G|<\infty . G$ is solvable if and only if all the composition factors of G are abelian.

Definition 1.12 .20 (extension). A group G is an extension of H by K if G has a normal subgroup N with $N \cong H$ and $G / N \cong K$. Equivalently,

$$
1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1
$$

is a short exact sequence (Definition ??).
Example 1.12.21. $H \times K$ is an extension of H by K; via a short exact sequence this is obvious, as is $H \times\{1\} \cong H$ and $(H \times K) /(H \times\{1\}) \cong K$.

Example 1.12.22. The groups $(\mathbf{Z} / 2 \mathbf{Z})^{3},(\mathbf{Z} / 2 \mathbf{Z}) \times(\mathbf{Z} / 4 \mathbf{Z}), D_{8}$, and Q_{8} are all extensions of $\mathbf{Z} / 2 \mathbf{Z}$ by $(\mathbf{Z} / 2 \mathbf{Z})^{2}$. For instance, $\left\langle r^{2}\right\rangle \unlhd D_{8}$ and $\langle-1\rangle \unlhd Q_{8}$.

Remark 1.12.23. The Hölder program asks us to classify all finite simple groups. It is a monster, but it has been done. The fact that all finite groups are constructed as a series of extensions with finite simple groups is reason enough to do this.
Remark 1.12.24. All abelian groups are solvable. If G is abelian, then

$$
\{0\} \unlhd G
$$

is a solvable series.
Remark 1.12.25. The class of isomorphism types of solvable groups is the smallest one that contains all abelian groups and is closed under group extensions. To see this, given a solvable series

$$
\{0\} \unlhd G_{1} \unlhd \cdots \unlhd G_{n-1} \unlhd G
$$

we have G_{2} is an extension of G_{1} by G_{2} / G_{1}. The group $G_{1} \cong G_{1} /\{0\}$ is abelian, so G_{2} / G_{1} is abelian. Similarly, G_{3} is an extension of G_{2} by G_{3} / G_{2}, which is abelian. Continue in this manner. G is an extension of an interated extension of abelian groups by an abelian group.

Example 1.12.26. Most nonabelian groups we have seen so far are solvable. $S_{3}, Q_{8}, D_{8}, D_{10}$, and S_{4} are all solvable. In fact, all groups of order less than 60 are solvable. Recall from Definition $\mathbf{1 . 1 2 . 4}$ the group A_{5}, the alternating group of order $5!/ 2=60$. This is a nonabelian simple group by Lemma $\mathbf{1 . 1 2 . 4 0}$ to come, so by Lemma $\mathbf{1 . 1 2 . 1 6}, A_{5}$ is not solvable. Further, S_{5} has A_{5} as a composition factor, and therefore S_{5} is not solvable. A composition series is

$$
\{1\} \unlhd A_{5} \unlhd S_{5}
$$

Definition 1.12.27 (transposition). A 2-cycle (a, b) in S_{n} is called a transposition.
Lemma 1.12.28. For all n, S_{n} is generated by the set of all transpositions.
Proof. Induct on n. If $n=0$ or $n=1$, the base case is vacuously true. Let $n=2$. We know $S_{2} \cong \mathbf{Z} / 2 \mathbf{Z}$, and as a set $S_{2}=\{(1),(1,2)\}$, so the base case is still true. For the inductive step, let $\sigma \in S_{n}$. As a function $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, so $\sigma(n) \in\{1, \ldots, n\}$. There are two cases. First suppose $\sigma(n)=n$, in which case σ is in the stabilizer (Definition 1.7.17) $\left(S_{n}\right)_{n}$. The stabilizer is isomorphic to S_{n-1} via sending transpositions to transpositions. Invoking the inductive hypothesis on S_{n-1}, we are done. Second suppose $\sigma(n)=i \neq n$. Then $(i, n) \sigma \in\left(S_{n}\right)_{n}$. As in the previous case, $(i, n) \sigma$ is a product of transpositions, so σ is.

Example 1.12.29. We can write $\sigma=(1,5,4,2,3)$ as a product of transpositions. First, $\sigma(5)=4$, so $(4,5) \sigma \in\left(S_{5}\right)_{5} \cong S_{4}$. Next, $((4,5) \sigma)(4)=2$, so $(2,4)(4,5) \sigma$ stabilizes 4 and 5 . Continuing, $(1,3)(2,4)(4,5) \sigma$ fixes 3,4 , and 5 , and finally $(1,2)(1,3)(2,4)(4,5) \sigma$ fixes $2,3,4$, and 5 , and therefore 1 as well. So $(1,2)(1,3)(2,4)(4,5) \sigma=(1)$, and solving for σ, we see that

$$
\sigma=(4,5)(2,4)(1,3)(1,2)
$$

Remark 1.12.30. We can use Lemma 1.12 .28 to write a presentation for S_{n}. Write $s_{i j}$ for (i, j); we have the following relations.

- $s_{i j}=s_{j i}$.
- $s_{i j}{ }^{2}=1$.
- If $\{i, j\} \cap\{k, \ell\}=\emptyset$, then $s_{i j} s_{k \ell}=s_{k \ell} s_{i j}$.
- $s_{i j} s_{j k} s_{i j}^{-1}=s_{i j} s_{j k} s_{i j}=s_{i k}$. We call this the braiding relation.

Let R be the set of all four types of relations above, and let $S=\left\{s_{i j} \mid i, j \in\{1, \ldots, n\}, i \neq j\right\}$. The group $\langle S \mid R\rangle$ is a presentation for S_{n}.

Example 1.12.31. One can use this presentation to show that

$$
s_{14} s_{12} s_{15} s_{13} s_{45} s_{35} s_{24} s_{13}=1
$$

Definition 1.12.32 (sign homomorphism). Define the sign homomorphism $\varepsilon: S_{n} \rightarrow\{-1,1\}$ by the unique group homomorphism such that $\varepsilon(\sigma)=-1$ when σ is a transposition.

Lemma 1.12.33. The sign homomorphism ε is well-defined.
Proof. Given the presentation of S_{n} in Remark $\mathbf{1 . 1 2 . 3 0}$, we can show that ε respects the set of relations R. Observe that

- $\varepsilon\left(s_{i j}\right)=-1=\varepsilon\left(s_{j i}\right)$,
- $\varepsilon\left(s_{i j} s_{i j}\right)=\varepsilon\left(s_{i j}\right) \varepsilon\left(s_{i j}\right)=(-1)(-1)=1=\varepsilon(1)$,
- $\varepsilon\left(s_{i j} s_{k \ell}\right)=\varepsilon\left(s_{i j}\right) \varepsilon\left(s_{k \ell}\right)=(-1)(-1)=1=(-1)(-1)=\varepsilon\left(s_{k \ell}\right) \varepsilon\left(s_{i j}\right)=\varepsilon\left(s_{k \ell} s_{i j}\right)$, and
- $\varepsilon\left(s_{i j} s_{j k} s_{i j}\right)=\varepsilon\left(s_{i j}\right) \varepsilon\left(s_{j k}\right) \varepsilon\left(s_{i j}\right)=(-1)(-1)(-1)=-1=\varepsilon\left(s_{i k}\right)$.

Remark 1.12.34. If σ is a k-cycle, then $\varepsilon(\sigma)=(-1)^{k-1}$.
Definition 1.12.35 (odd permutation). Let $\sigma \in S_{n}$. If $\varepsilon(\sigma)=-1$, then σ is odd.
Definition 1.12.36 (even permutation). Let $\sigma \in S_{n}$. If $\varepsilon(\sigma)=1$, then σ is even.
Remark 1.12.37. If σ is a k-cycle, then σ is even if and only if k is odd (and vice versa).
Definition 1.12.38 (alternating group 2). Another way to define the alternating group on n symbols $A_{n} \unlhd S_{n}$ is that $A_{n}=\operatorname{ker}\left(\varepsilon: S_{n} \rightarrow\{-1,1\}\right)$. In other words, $A_{n}=\left\{\sigma \in S_{n} \mid \sigma\right.$ is even $\}$, as in Definition 1.12 .4

Remark 1.12.39. By Theorem 1.10.1 [The First Isomorphism Theorem], $\left|A_{n}\right|=n!/ 2$, since $S_{n} / A_{n} \cong\{1,-1\}$, so by Theorem 1.9.1 [Lagrange's Theorem], $\left|S_{n}: A_{n}\right|=\left|S_{n}\right| /\left|A_{n}\right|=2$. Thus $\left|A_{n}\right|=\left|S_{n}\right| / 2=n!/ 2$.

Lemma 1.12.40. If $n \geq 5$, then A_{n} is a nonabelian simple group.
Proof. A_{n} is clearly nonabelian; $(1,2)(2,3)=(1,3,2) \neq(1,2,3)=(2,3)(1,2)$. We will only prove that A_{5} is simple. In S_{5}, we will build an exhaustive table of the conjugacy classes of elements (the orbits under the conjugation action), the size of the classes, and the image of the class under ε, since the parity of a permutation is invariant under conjugacy. We have

Representative	Size	Image under ε
(1)	1	1
$(1,2)$	10	-1
$(1,2,3)$	20	1
$(1,2,3,4)$	30	-1
$(1,2,3,4,5)$	24	1
$(1,2)(3,4)$	15	1
$(1,2)(3,4,5)$	20	-1

In A_{5}, however, we have

Representative	Size
(1)	1
$(1,2,3)$	20
$(1,2)(3,4)$	15
$(1,2,3,4,5)$	12
$(2,1,3,4,5)$	12

By Proposition 1.8.13, if $N \unlhd G$, then N is a union of conjugacy classes of G. Suppose A_{5} has a normal subgroup N. By Theorem 1.9 .1 [Lagrange's Theorem], $|N|$ divides 60. A union of classes in the second table must have cardinality dividing 60 , but there is no way to do that nontrivially. Thus, A_{5} is simple.

1.13 The Class Equation

Theorem 1.13.1 (The Class Equation). Let G be a finite group. Let g_{1}, \ldots, g_{r} be representatives of the conjugacy classes of G which are not in $Z(G)$, the center of G. One has

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right|
$$

Proof. As a set, $G=Z(G) \sqcup\left[g_{1}\right] \sqcup \cdots \sqcup\left[g_{r}\right]$. Thus,

$$
|G|=|Z(G)|+\left|\left[g_{1}\right]\right|+\cdots+\left|\left[g_{r}\right]\right| .
$$

By Corollary 1.11.27, $\left|\left[g_{i}\right]\right|=\left|G: C_{G}\left(g_{i}\right)\right|$, and the result is shown.
Corollary 1.13.2. If P is a group of order p^{α} where p is prime, then $Z(P) \neq\{1\}$.
Proof. Let g_{1}, \ldots, g_{r} be representatives of noncentral conjugacy classes. Reduce the class equation modulo p. We have

$$
\begin{aligned}
0 \equiv p \equiv|P| & \equiv|Z(P)|+\sum_{i=1}^{r}\left|P: C_{P}\left(g_{i}\right)\right| \quad(\bmod p) \\
& \equiv|Z(P)|+\sum_{i=1}^{r} 0 \quad(\bmod p) .
\end{aligned}
$$

So $|Z(P)| \equiv 0(\bmod p)$, and therefore $Z(P) \neq\{1\}$.
Corollary 1.13.3. If $|P|=p^{2}$, then P is abelian. Furthermore, $P \cong \mathbf{Z} / p^{2} \mathbf{Z}$ or $P \cong(\mathbf{Z} / p \mathbf{Z})^{2}$.
Proof. By Corollary 1.13.2 $Z(P) \neq\{1\}$. Consider $|P / Z(P)|$. It must be either 1 or p. If $|P / Z(P)|=p$, then $P / Z(P)$ is cyclic by Corollary 1.9.7. By a homework exercise, P is abelian. Otherwise, if we have $|P / Z(P)|=1$, then $P \cong Z(P)$ is abelian.

Remark 1.13.4. Given Theorem 1.13.1 [The Class Equation], one may ask: how do you find the classes $\left[g_{i}\right]$? First, find $Z(G)$. We know that $Z(G) \subseteq C_{G}\left(g_{i}\right)$, and we also know that $\left\langle Z(G), g_{i}\right\rangle \leq C_{G}\left(g_{i}\right)$. This gives a lower bound on $\left|C_{G}\left(g_{i}\right)\right|$, and an upper bound on $\left|G: C_{G}\left(g_{i}\right)\right|=\left|\left[g_{i}\right]\right|$. Pick $h \in G$ not in $\langle g\rangle$ or $Z(G)$. We want to know whether or not $h \in C_{G}\left(g_{i}\right)$, so compute $h g_{i} h^{-1}$. If $h g h^{-1} \neq g_{i}$, then $h g_{i} h^{-1} \in\left[g_{i}\right]$. If $h g_{i} h^{-1}=g_{i}$, then $h \in C_{G}\left(g_{i}\right)$, so $\langle Z(G), g, h\rangle \leq C_{G}\left(g_{i}\right)$. We know have a better upper bound on $\left|\left[g_{i}\right]\right|$; repeat.

Example 1.13.5. For abelian groups, $|G|=|Z(G)|$, so the class equation is unhelpful.

Example 1.13.6. Consider $D_{6}=\left\{1, r, r^{2}, s, s r, s r^{2}\right\}$. We have

$$
\begin{aligned}
{[r] } & =\left\{r, r^{2}\right\} \\
C_{D_{6}}(r) & =\langle r\rangle \\
s r s^{-1} & =r^{-1}=r^{2} \\
{[s] } & =\left\{s, s r, s r^{2}\right\} \\
C_{D_{6}}(s) & =\langle s\rangle \\
r s r^{-1} & =s r^{2} r^{-1}=s r \\
r s r r^{-1} & =r s=s r^{2} .
\end{aligned}
$$

The class equation is therefore

$$
\begin{aligned}
\left|D_{6}\right| & =\left|Z\left(D_{6}\right)\right|+\left|D_{6}: C_{D_{6}}(r)\right|+\left|D_{6}: C_{D_{6}}(s)\right| \\
6 & =1+2+3
\end{aligned}
$$

Example 1.13.7. Consider $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$. The center of Q_{8} is $Z\left(Q_{8}\right)=\langle-1\rangle=\{1,-1\}$. Let $g \in Q_{8} \backslash Z\left(Q_{8}\right)$. We have $\left\langle Z\left(Q_{8}\right), g\right\rangle \leq C_{Q_{8}}(g)$ and $\left\langle Z\left(Q_{8}\right), g\right\rangle$ has at least four elements, so $|[g]| \leq 2$, and therefore must be 2 . We can figure out the conjugacy classes with computation:

$$
\begin{aligned}
{[i] } & =\{i,-i\} \\
{[j] } & =\{j,-j\} \\
{[k] } & =\{k,-k\} .
\end{aligned}
$$

The class equation is

$$
\begin{aligned}
\left|Q_{8}\right| & =\mid Z\left(Q_{8}|+|[i]|+|[j]|+|[k]|\right. \\
8 & =2+2+2+2
\end{aligned}
$$

Lemma 1.13.8. Two elements of S_{n} are conjugate if and only if they have the same cycle type; i.e., they have the same partition of $n \in \mathbf{Z}$. The conjugacy classes of S_{n} correspond to the partitions of n.

Proof. First, let $\sigma, \tau \in S_{n}$. We want to show that $\tau \sigma \tau^{-1}$ and σ have the same cycle type. Write

$$
\sigma=\left(a_{11}, \ldots, a_{1 \ell_{1}}\right)\left(a_{21}, \ldots, a_{2 \ell_{2}}\right) \cdots\left(a_{k 1}, \ldots, a_{k \ell_{k}}\right)
$$

The cycle type of σ is the partition $n=\ell_{1}+\ell_{2}+\cdots+\ell_{k}$. Now via computation,

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{11}\right), \ldots, \tau\left(a_{1 \ell_{1}}\right)\right)\left(\tau\left(a_{21}\right), \ldots, \tau\left(a_{2 \ell_{2}}\right)\right) \cdots\left(\tau\left(a_{k 1}\right), \ldots, \tau\left(a_{k \ell_{k}}\right)\right)
$$

The cycle types of σ and $\tau \sigma \tau^{-1}$ are the same.
In the other direction, suppose $\sigma, \tau \in S_{n}$ have the same cycle type. That means that

$$
\sigma=\left(a_{11}, \ldots, a_{1 \ell_{1}}\right) \cdots\left(a_{k 1}, \ldots, a_{k \ell_{k}}\right)
$$

and

$$
\tau=\left(b_{11}, \ldots, b_{1 \ell_{1}}\right) \cdots\left(b_{k 1}, \ldots, b_{k \ell_{k}}\right)
$$

Define a permutation $\rho:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ via $\rho\left(a_{i j}\right)=b_{i j}$ for all $i j$. By construction, $\rho \in S_{n}$, and a computation verifies $\rho \sigma \rho^{-1}=\tau$, so σ and τ are conjugate, as desired.

