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1 Algebra 1

1.1 Introduction to Groups

Definition 1.1.1 (group). A group is a set G with a binary operation • satisfying:
1. • is associative,
2. G has an identity, and
3. every element g ∈ G has an inverse under •.

Definition 1.1.2 (binary product). A binary product is a function • : G × G → G written g • h or gh
instead of •(g, h).

Remark 1.1.3. Note that a function needs to be well-defined; i.e., there must be an unambiguous rule
defined for all inputs, and it must be closed.

Definition 1.1.4 (associative). An operation is associative if for all x, y, z ∈ G, (xy)z = x(yz).

Definition 1.1.5 (identity). An identity is an element 1 ∈ G such that for all x ∈ G, 1x = x and x1 = x.

Definition 1.1.6 (inverse). We define the inverse of x ∈ G to be an element y ∈ G such that xy = 1 and
yx = 1.

Example 1.1.7. The following are groups:
• Z under addition.
• C, R, and Q under addition.
• Any vector space V under vector addition.
• Permutations on a set S; i.e., {f : S → S | f is a bijection} under function composition.
• The trivial group; i.e., {1} under multiplication or {0} under addition or {a} under an operation.
• GLn(R), the general linear group; i.e., the set of invertible n × n matrices with real entries under

matrix multiplication (Definition 1.5.3).

Definition 1.1.8 (abelian). A group G is abelian if for all g, h ∈ G, gh = hg.

Example 1.1.9. GL2(R) is nonabelian, because[
1 1
0 1

] [
1 0
1 1

]
6=
[
1 0
1 1

] [
1 1
0 1

]
.

Remark 1.1.10. In terms of notation, groups can be written additively or multiplicatively. Multiplicative
notation uses •, ×, juxtaposition, ◦, ∗, and so on. 1 is the identity, g−1 is the inverse of g, g0 = 1, and
for n ≥ 1, gn = g · · · g and g−n = g−1 · · · g−1 n times. Additive notation uses +. The convention is that
additive notation is only used for abelian groups. 0 is the identity, −g is the inverse of g, 0 · g = 0, and for
n ≥ 1, ng = g + · · ·+ g and −ng = −g + · · ·+−g n times.

Proposition 1.1.11. Let G be a group. The following facts are easily proven.
• The identity is unique.
• For all g ∈ G, g has a unique inverse; i.e., there is a well-defined function G→ G that sends g to g−1.
• For all g ∈ G, (g−1)−1 = g.
• For all g, h ∈ G, (gh)−1 = h−1g−1.
• n-fold products are independent of association.
• Power laws hold; i.e., gn+m = gngm and gnm = (gn)m.
• Cancellation holds; i.e., if gx = gy for some g then x = y and if xg = yg then x = y. This implies

three-term equations have unique solutions in G; i.e., gx = h and xg = h both have unique solutions
x ∈ G.

Definition 1.1.12 (order of a group). If G is a group, then the order of G is its cardinality as a set. We
usually write |G| or sometimes #G.

Definition 1.1.13 (order of an element). If G is a group, for any g ∈ G, the order of g is the smallest
nonnegative n ∈ Z such that gn = 1, or ∞ if no such n exists. We write |g|.
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Example 1.1.14. Since [
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
,

the matrix [
0 1
1 0

]
has order 2. One can see that the matrix [

1 1
0 1

]
has order ∞.

Remark 1.1.15. When it can be written, the multiplicative table of a group is a good way to communicate
that group. For instance, the group Z/3Z = {0, 1, 2} under addition mod 3 has table

x
x+ y 0 1 2

0 0 1 2
y 1 1 2 0

2 2 0 1

Definition 1.1.16 (dihedral group). The dihedral group D2n is the set of isometries of the regular n-gon
with operation composition. The isometries can be thought of as inducing permutations of {1, . . . , n} that
respect adjacent vertices.

Remark 1.1.17. The order of D2n is 2n.

Example 1.1.18. The group D6 is the set of isometries of a regular triangle. Label the vertices 1, 2, and
3. There are two distinguished isometries: the first, s, is a reflection about the vertex 1. As a permutation,
s is the function 1 7→ 1, 2 7→ 3, and 3 7→ 2. The second, r, is a rotation counterclockwise. As a permutation,
r is the function 1 7→ 2, 2 7→ 3, and 3 7→ 1. The isometries r and s easily generalize to D2n for all n.

We claim D2n is not abelian, as rs 6= sr. In D6, this computation is quickly evident; rs is the function
1 7→ 2, 2 7→ 1, and 3 7→ 3, while sr is the function 1 7→ 3, 2 7→ 2, and 3 7→ 1.

In fact, in D2n, rs = sr−1. To see this, we compute:

i 1 2 3 · · · n− 1 n
s(i) 1 n n− 1 · · · 3 2

and

i 1 2 3 · · · n− 1 n
r(i) 2 3 4 · · · n 1

Therefore a quick computation verifies that

i 1 2 3 · · · n− 1 n
rs(i) 2 1 n · · · 4 3
sr−1(i) 2 1 n · · · 4 3

as claimed.
We can verify a few other relations among r and s. It is evident that s2 = 1 and that rn = 1. Furthermore,

rk 6= 1 for k ∈ {1, . . . , n− 1}. Therefore, |r| = n and |s| = 2.
As a set, D2n = {1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}. In fact, D2n is generated by r and s, meaning

every element x ∈ D2n can be attained as a finite composition of r and s. Furthermore, the relations above
completely characterize D2n; i.e., every equation in D2n in r and s is a consequence of the relations s2 = 1,
rn = 1, and rs = sr−1. We thus say that D2n has the presentation 〈s, r | s2 = rn = 1, rs = sr−1〉.
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Definition 1.1.19 (group homomorphism). ϕ : G → H is a (group) homomorphism if for all a, b ∈ G,
ϕ(ab) = ϕ(a)ϕ(b).

Definition 1.1.20 (group isomorphism). ϕ : G → H is a (group) isomorphism if ϕ is a bijective
homomorphism.

Remark 1.1.21. Being isomorphic is the right notion of sameness for groups. Also note that being isomor-
phic is an equivalence relation on the class of groups.

Definition 1.1.22 (kernel of a group homomorphism). If ϕ : G → H is a group homomorphism, then the
kernel of the map ϕ is kerϕ = {g ∈ G | ϕ(g) = 1}.

Proposition 1.1.23. ϕ is injective if and only if kerϕ = {1}.

Remark 1.1.24. One may show that G ∼= H by defining a function ϕ : G → H that you suspect is an
isomorphism. Show that ϕ is a well-defined group homomorphism. One may use presentations, if available.
Then show ϕ is injective, often by showing kerϕ = {1} (see Lemma 1.7.47 to come), and show ϕ is
surjective, often by showing ϕ(G) contains a generating set for H. Also, one can simply produce a ϕ−1.

Remark 1.1.25. On the other hand, to show G 6∼= H, find a property or invariant that is preserved by
isomorphisms which G and H do not share.

1.2 Presentations

Example 1.2.1. The presentation 〈s, t | st2s−1 = t3, ts2t−1 = t3, st = ts〉 is trivial, but not obviously so.
To see this, observe that

st2s−1 = t3

tsts−1 = t3 via the relation st = ts

t2ss−1 = t3 via the relation st = ts

t2 = t3

1 = t.

Similarly, s = 1. Thus this is the trivial group.

Example 1.2.2. The following are presentations for known groups:
• 〈a | ∅〉 ∼= Z.
• 〈a, b | ab = ba〉 ∼= Z2.
• 〈a | an = 1〉 ∼= Z/nZ.
• 〈a, b | ∅〉 is the free group on two generators.

Remark 1.2.3. We are reasoning about group presentations without having defined them, but this is okay.
We will define group presentations based on free groups, then later define free groups. This is the general
idea.

Let S be a set of letters. Let R be a set of equations in S under a group operation. Given any equation
u = v, it can be written as uv−1 = 1. Starting with F = 〈S | ∅〉, the free group on S, we then consider
R = {r1, r2, . . . , } ⊆ F , which are terms that we want to equal 1. Recall that G/N has elements xN where
x ∈ N if and only if xN = 1N . N is the set of elements forced to be 1 in the quotient. Thus build the smallest
possible normal subgroup of F containing R. Define a normal subgroup N = 〈{xrx−1 | r ∈ R, x ∈ F}〉 E F .
Then define 〈S | R〉 = F/N .

Definition 1.2.4 (string). Let S be a set (of letters). A string on S is a finite sequence of elements of S,
written s1s2 · · · sn for si ∈ S.

Definition 1.2.5 (Kleene star). The set of all strings in S, written S∗, is the Kleene star of S.

Example 1.2.6. If S = {a, b, c}, then some elements of S∗ are a, aaa, abcabc, and ε, the empty/null string.
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Remark 1.2.7. Note that S∗ has a binary product, given by concatenation. So a · abcabc = aabcabc, and
a · ε = a.

Definition 1.2.8 (monoid). A monoid is a “group that doesn’t necessarily have inverses.” That is, it is a
set with a binary product such that the binary product is associative and there exists an identity element.

Proposition 1.2.9. S∗ is a monoid under concatenation with identity element ε.

Remark 1.2.10. Of course, there is the problem that no nonidentity element of S∗ has a inverse. We
introduce the following definition to remedy this.

Definition 1.2.11 (free group). Let S be a set. Let S−1 be the set of formal inverses of S; i.e., elements
written s−1 for each s ∈ S. Consider the free monoid (S ∪ S−1)∗. Quotient by the relation ∼, where ∼
is the finest/smallest equivalence relation that satisfies waa−1v ∼ wv. We define the free group on S
to be F (S) = (S ∪ S−1)∗/ ∼. When S = {a1, . . . , an}, F (S) = Fn. The operation on F (S) is induced
concatenation.

Proposition 1.2.12. F (S) is a well-defined group.

Remark 1.2.13. Inverses in F (S) are constructed by reversing the order of a word and replacing each letter
with its inverse, like general inverses. For instance,

(abca−1b−1c)−1 = c−1bac−1b−1a−1.

Definition 1.2.14 (freely reduced). A word in (S ∪ S−1)∗ is freely reduced if it has no subwords of the
form aa−1 or a−1a for a ∈ S.

Proposition 1.2.15. Each equivalence class in F (S) is represented by a unique freely reduced word.

Corollary 1.2.16. If S 6= ∅, then F (S) is not trivial. Moreover, F (S) is of infinite order.

Lemma 1.2.17. If |S| = 1, then F (S) ∼= Z.

Proof. Since F (S) = {. . . , a−2, a−1, ε = a0, a1, a2, . . .}, the result is obvious.

Lemma 1.2.18. If |S| ≥ 2, then F (S) is nonabelian.

Proof. Let a, b ∈ S be distinct. Then ab and ba are different freely reduced words, so a · b 6= b ·a in F (S).

Proposition 1.2.19. Let G be a group and let f : S → G be a function of sets. There is a unique
homomorphism ϕ : F (S)→ G such that ϕ(s) = f(s) for all s ∈ S.

Remark 1.2.20. Proposition 1.2.19 is the defining property of free groups up to isomorphism. It
says that free groups have a basis, S. The proof idea simply exploits the construction ϕ(s1

η1 · · · snηn) :=
f(s1)η1 · · · f(sn)ηn .

Example 1.2.21. Let’s now show that our presentation 〈s, r | s2 = rn = 1, rs = sr−1〉 for D2n is correct.
Note first that 〈s, r | s2 = rn = 1, rs = sr−1〉 has at most 2n elements: {1, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.
It could have less, if there is some nontrivial way to relate two elements.

Let S = {s, r} and let F = F (S). Define ϕ : F → D2n by ϕ(s) = s and ϕ(r) = r. By Proposition
1.2.19, ϕ is a homomorphism. ϕ is surjective, since s and r in D2n generate D2n by Example 1.1.18.
Furthermore, ϕ descends to a homomorphism ϕ : F/〈R〉 → D2n, where R = {s2, rn, rs−1rs}. Note that
F/〈R〉 = 〈S | R〉. Now, ϕ is a surjective homomorphism from a group with at most 2n elements to a group
with exactly 2n elements. Therefore, ϕ is a bijective homomorphism - an isomorphism.

Remark 1.2.22. The above example generalizes. We see that G = 〈S | R〉 if there is an isomorphism
F (S)/〈R〉 → G, or equivalently, there is a surjective homomorphism F (S)→ G with kernel 〈R〉. Identify S
with its image under these maps; i.e., S is the set of generators of G, rather than letters.

Proposition 1.2.23. Let G = 〈S | R〉 and let H be a group. Suppose f : S → H is a function, and for all
r ∈ R, if we substitute f(s) for s in r for all s ∈ S, we get 1 ∈ H. Then there is a unique homomorphism
ϕ : G→ H with ϕ(s) = f(s) for all s ∈ S.
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Remark 1.2.24. This gives great utility to group presentations. The proof sketch is as follows: by Propo-
sition 1.2.19, f extends to ϕ̃ : F (S) → H. Define ϕ(g) = ϕ̃(w) where w represents g; i.e., w ∈ F (S)
and under the homomorphism coming from the presentation, w 7→ g. This construction is well-defined, as
ϕ̃(r) = 1 ∈ H for all r ∈ R. If G = 〈S | ∅〉, then for all g ∈ G, there exists a1, . . . , ak ∈ S ∪ S−1 such that
g = a1 · · · ak. Then, ϕ(g) = ϕ(a1 · · · ak) = ϕ(a1) · · ·ϕ(ak).

Example 1.2.25. Let G = D2n = 〈r, s | s2 = rn = 1, rs = sr−1〉. We wish to construct a homomorphism
ϕ : D2n → Z/nZ satisfying ϕ(r) = 1 and ϕ(s) = 0. Notice that

ϕ(rn) = ϕ(r) + · · ·+ ϕ(r) = nϕ(r) = n · 1 = 0,

ϕ(s2) = ϕ(s) + ϕ(s) = 0 + 0 = 0, and

ϕ(1) = 0.

However,

ϕ(rs) = ϕ(r) + ϕ(s) = 1 + 0 = 1 and

ϕ(sr−1) = ϕ(s)− ϕ(r) = 0− 1 = −1.

If n ≥ 3, then 1 6= −1, and we have a contradiction. In this case, no such homomorphism exists.

Example 1.2.26. Consider instead a homomorphism ϕ : D2n → Z/2Z with ϕ(r) = 0 and ϕ(s) = 1. This
does work, as

ϕ(rn) = 0,

ϕ(s2) = 0,

ϕ(rs) = 1, and

ϕ(sr−1) = 1.

Remark 1.2.27. How do we find presentations? We have the following techniques.
• If G is finite, find a generating set S and relations R such that 〈S | R〉 has at most |G| elements. Then
G = 〈S | R〉, as F (S)/〈R〉 → G is a surjective homomorphism. Note that you must be able to count
〈S | R〉 in this approach.

• If we know G = 〈S | R〉 and M E G, then we can find a presentation for G/M .

Example 1.2.27.1. We know Z = 〈t | ∅〉. Since nZ = {kn | k ∈ Z} = 〈n〉, tn represents n ∈ Z,
so Z/nZ = 〈t | tn = 1〉.

In general, start with your generating set, and set relations to 1. Suppose R′ ⊆ F (S) such that R′

represents a set of generators for M in G (or normal generators). Then G/M = 〈S | R ∪ R′〉; i.e., we
have a surjective homormorphism F (S)→ G/M with kernel 〈R ∪R′〉.

• Suppose G has normal subgroup M E G and H ≤ G such that M ∩ H = {1} and MH = G (i.e.,
G = 〈M ∪ H〉). Suppose M = 〈S1 | R1〉 and H = 〈S2 | R2〉 which are finite presentations. For
every s ∈ S2 ∪ S2

−1 and t ∈ S1, find a word ws,t ∈ F (S1) such that sts−1 = ws,t in G. Then let
R3 = {sts−1ws,t

−1 | s ∈ S2 ∪ S2
−1, t ∈ S1}. Then G = 〈S1 ∪ S2 | R1 ∪R2 ∪R3〉.

Example 1.2.27.2. Let G = D2n. Let M = 〈r〉 ∼= Z/nZ = 〈r | rn = 1〉 and H = 〈s〉 ∼= Z/2Z =
〈s | s2 = 1〉. Now declare s−1rs = r−1 and srs−1 = r−1. (Note that the second is redundant
from the other relations.) It follows that D2n = 〈s, r | s2 = rn = 1, s−1rs = r−1〉.

• Suppose G = 〈S1 | R1〉 and H = 〈S2 | R2〉. Let R3 = {sts−1t−1 | s ∈ S1, t ∈ S2} ⊆ F (S1 ∪ S2). Note
that the elements in 〈R3〉 are sts−1t−1 = 1, so st = ts. Then G×H = 〈S1 ∪ S2 | R1 ∪R2 ∪R3〉.

Example 1.2.27.3. Let Z = 〈s | ∅〉 and Z = 〈t | ∅〉. Then Z× Z = 〈s, t | sts−1t−1〉.
• We can also attempt to brute force a presentation. Let S = G \ {1}. Let R = {s1s2 | s1, s2 ∈ S, s1s2 =

1} ∪ {s1s2s3 | s1, s2, s3 ∈ S, s1s2s3 = 1} ∪ · · · . That is, write the entire multiplication table. Then
G = 〈S | R〉. Therefore, every group has a presentation.
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Definition 1.2.28 (Tietze transformations). Tietze transformations are permissible computations that
can be applied to a group presentation without changing its isomorphism class. Let G = 〈S | R〉. The Tietze
transformations are

1. Adding a generator: let t be a letter such that t 6∈ S. Pick w ∈ F (S). Then G = 〈S∪{t} | R∪{tw−1}〉.
2. Removing an unnecessary generator: pick s ∈ S. Suppose r ∈ R such that there is exactly one s±1 in
r, and further, s appears nowhere else in R. Then G = 〈S \ {s} | R \ {r}〉.

3. Adding a true relation: Suppose w ∈ 〈R〉. Then G = 〈S | R ∪ {w}〉.
4. Removing a redundant relation: suppose r ∈ R and r ∈ 〈R \ {r}〉. Then G = 〈S | R \ {r}〉.

Example 1.2.29. One can derive D2n = 〈a, b | a2, b2, (ab)n〉 from D2n = 〈r, s | rn, s2, s−1rsr〉.

1.3 The Symmetric Group

Definition 1.3.1 (symmetric group). Let X be a set. The symmetric group on X is the set of bijections
X → X with binary product composition. We write Sym(X), but if X ∼= {1, 2, . . . , n}, we write Sn.

Remark 1.3.2. The following are easily verified.
• For any X, Sym(X) is a group.
• |Sn| = n!, and if |X| =∞, then |Sym(X)| =∞.
• One may record elements of Sn as tables, written as follows:

σ =

(
1 2 3 4 5 6 7
5 4 7 2 6 3 1

)
∈ S7.

To compose, simply stack tables:

σ2 =

(
1 2 3 4 5 6 7
6 2 1 4 3 7 5

)
.

To invert, turn the table upside down and reorder:

σ−1 =

(
1 2 3 4 5 6 7
7 4 6 2 1 5 3

)
.

• There is a better notation though; cycle notation. If a1, . . . , ak ∈ {1, . . . , n} are distinct, then we write
τ = (a1, . . . , ak) ∈ Sn, where τ(ai) = ai+1 for i ∈ {1, . . . , k − 1} and τ(ak) = a1. For completeness,
τ(x) = x if x 6∈ {a1, . . . , ak}. We say τ is a cycle. The standard notation for the identity is (1).

Proposition 1.3.3. Every permutation in Sn can be expressed as a product of disjoint cycles. This expres-
sion is unique up to ordering cycles, cyclically permuting cycle notation, and including trivial cycles.

Remark 1.3.4. There is an algorithm for expressing a permutation as a product of disjoint cycles. If

σ =

(
1 2 3 4 5 6 7
5 4 7 2 6 3 1

)
,

then σ = (1, 5, 6, 3, 7)(2, 4). Furthermore, σ2 = (1, 5, 6, 3, 7)(2, 4)(1, 5, 6, 3, 7)(2, 4) = (1, 6, 7, 5, 3)(2)(4) =
(1, 6, 7, 5, 3). Also, σ−1 = (7, 3, 6, 5, 1)(4, 2).

Example 1.3.5. Here is a few more computations. If σ = (1, 6, 7, 5, 3)(2, 4) and τ = (1, 2, 3, 4, 5, 6, 7), then
σ ◦ τ = (1, 6, 7, 5, 3)(2, 4)(1, 2, 3, 4, 5, 6, 7) = (1, 4, 3, 2)(5, 7, 6) and τ ◦ σ = (1, 7, 6)(2, 5, 4, 3).

Remark 1.3.6. Note that (1, 2)(2, 3) 6= (2, 3)(1, 2), so Sn is nonabelian for n ≥ 3.

1.4 The Quaternion Group

Definition 1.4.1 (quaternion group). The quaternion group, Q8, is the set {1, i, j, k,−1,−i,−j,−k} with
multiplication table derived from i2 = j2 = k2 = −1, ij = k, ji = −k, and −1x = −x.
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Remark 1.4.2. There are much nicer ways to communicate Q8. For example,

Q8
∼=
〈[

0 1
−1 0

]
,

[
i 0
0 −i

]〉
≤ GL2C.

We traditionally refer to [
0 1
−1 0

]
and

[
i 0
0 −i

]
as i and j, respectively. In addition, Q8 = 〈a, b | a4 = 1, b2 = a2, bab−1 = a−1〉. This presentation shows that
Q8 has at most the following elements: {1, a, a2, a3, b, ab, a2b, a3b}. Then, there is a homomorphism ϕ(a) = i
and ϕ(b) = j which is surjective from 〈a, b | a4 = 1, b2 = a2, bab−1 = a−1〉 → 〈i, j〉. Thus, these definitions
are equivalent.

Remark 1.4.3. The following properties of Q8 are easily verified.
• |Q8| = 8.
• Q8 is nonabelian.
• Observe the following table:

order of number of elements
an element with that order

1 1
2 1
4 6

Contrast that with the same information for the group D8:

order of number of elements
an element with that order

1 1
2 5
4 2

Thus Q8 6∼= D8.

1.5 Fields

Definition 1.5.1 (field). A field is a set F with two binary operations, + and •, such that:
1. (F,+) is an abelian group,
2. (F \ {0}, •) is an abelian group (note 0 is the identity for +), and
3. distributivity holds; i.e., for all a, b, c ∈ F , a(b+ c) = ab+ ac.

Example 1.5.2. The following are fields.
• Q, R, and C.
• If p is a prime, Z/pZ.
• Q[

√
2] = {a+ b

√
2 ∈ R | a, b ∈ Q}.

• For each prime p and positive n ∈ N, there is a unique field of order pn. Write Fpn .

Definition 1.5.3 (general linear group). For any field F and n a positive integer, define the general linear
group GLnF , which is the set of n× n invertible matrices with entries in F . GLnF is a group with matrix
multiplication as the operation.

Definition 1.5.4 (special linear group). For any field F and n a positive integer, define the special linear
group SLnF , which is the set of n×n matrices with determinant 1 and entries in F . SLnF is a group with
matrix multiplication as the operation.

Remark 1.5.5. Recall that a matrix is invertible if and only if it has nonzero determinant.

Remark 1.5.6. Note that linear algebra works the same way over an arbitrary field F as it does over R or
C, except for orthogonality.

Proposition 1.5.7. If F is a finite field with |F | = q, then |GLnF | = (qn−1)(qn−q)(qn−q2) · · · (qn−qn−1).

Example 1.5.8. By Proposition 1.5.7, |GL3(Z/2Z)| = (23 − 1)(23 − 2)(23 − 22) = 7 · 6 · 4 = 168.
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1.6 Homomorphisms and Isomorphisms

Remark 1.6.1. Recall Definitions 1.1.19 and 1.1.20. Recall also the approach for showing G ∼= H or
G 6∼= H outlined in Remarks 1.1.24 and 1.1.25.

Example 1.6.2. Recall that D6 = 〈r, s | r3 = s2 = 1, srs = r−1〉 and S3 is the group of permutations on
{1, 2, 3}, which we write in cycle notation (Remark 1.3.2). Define ϕ : D6 → S3 by ϕ(r) = (1, 2, 3) and
ϕ(s) = (1, 2). To check the relations:

(1, 2, 3)3 = (1) as (1, 2, 3) is a 3-cycle,

(1, 2)2 = (1) as (1, 2) is a 2-cycle,

(1, 2)(1, 2, 3)(1, 2) = (1, 3, 2) = (1, 2, 3)−1.

Thus ϕ is a well-defined homomorphism.
Furthermore, ϕ is surjective, since 〈(1, 2, 3)(1, 2)〉 = S3. To see this, observe that

(1, 2, 3)(1, 2)(1, 2, 3)−1 = (2, 3), and

(1, 2, 3)(2, 3)(1, 2, 3)−1 = (1, 3),

giving us 6 distinct elements from (1, 2, 3) and (1, 2). This is a specific result of the more general fact that
an n-cycle and a 2-cycle generate Sn.

Since ϕ is a surjective homomorphism between two groups of order 6, ϕ is an isomorphism.

Example 1.6.3. Recall from Remark 1.4.2 that Q8 = 〈a, b | a4 = 1, a2 = b2, aba−1 = b−1〉. Define
ϕ : Q8 → (Z/2Z)2 by ϕ(a) = (1, 0) and ϕ(b) = (0, 1). To check the relations:

4(1, 0) = (4, 0) = (0, 0),

2(1, 0) = (2, 0) = (0, 0) = (0, 2) = 2(0, 1),

(1, 0) + (0, 1)− (1, 0) = (0, 1) = −(0, 1).

Thus ϕ is a well-defined homomorphism. Surjectivity is obvious, since 〈(1, 0), (0, 1)〉 = (Z/2Z)2, but ϕ is not
injective, because kerϕ = 〈a2〉.

Example 1.6.4. One may show that there is a nontrivial homomorphism D8 → (Z/2Z)2. Further, there is
an isomorphism D8 → H(Z/2Z), the Heisenberg group. The Heisenberg group of a field F is

H(F ) =


1 a b

0 1 c
0 0 1

 | a, b, c ∈ F
 .

Example 1.6.5. Define ϕ : H(F )→ F × F by

ϕ

1 a b
0 1 c
0 0 1

 = (a, c).

ϕ is indeed a homomorphism, as1 a b
0 1 c
0 0 1

1 d e
0 1 f
0 0 1

 =

1 a+ d e+ af + b
0 1 c+ f
0 0 1

 .
ϕ is clearly surjective and not injective.

Example 1.6.6. Let U = {z ∈ C | |z| = 1} be the unit circle. There is a homomorphism ϕ : R→ U defined
by ϕ(x) = eix = cosx+ i sinx, with kerϕ = 2πZ.
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1.7 Subgroups

Definition 1.7.1 (induced operation). Let G be a group and let H be a subset of G. If the product on G,
G×G→ G, restricts to H ×H → H, then we say H ×H → H is the induced operation on H.

Definition 1.7.2 (subgroup). H is a subgroup of G, written H ≤ G, if H is a group under the induced
operation.

Example 1.7.3. Z ≤ Q ≤ R ≤ C under +. Similarly, Z∗ ≤ Q∗ ≤ R∗ ≤ C∗ under ·.

Remark 1.7.4. For every group G, {1} ≤ G and G ≤ G. We call {1} the trivial subgroup and G the
improper subgroup (if we even want to refer to it at all). We say proper subgroups to exclude the case
G ≤ G.

Example 1.7.5. 〈r〉 = {1, r, . . . , rn−1〉 = Z/nZ ≤ D2n is a proper subgroup.

Example 1.7.6. For nonexamples, consider N 6≤ Z. There is an induced operation; + on Z induces + on
N, but N is not a group. Usually however, the more common problem is that an induced operation does
not exist. For example, {r} 6≤ D2n. Finally, ∅ 6≤ G, as ∅ is not a group as well; it has no identity. Though
note that ∅ does vacuously have an induced operation.

Lemma 1.7.7 (First subgroup criterion). Let G be a group and H ⊆ G. H ≤ G if and only if
1. H 6= ∅,
2. H is closed under taking products in G, and
3. H is closed under taking inverses in G.

Proof. One direction is easy. For the other, assume 1, 2, and 3 hold. Since H is closed under products, H
has a well-defined induced product from G. The product on H is associative because this is inherited from
G. Since H 6= ∅, there exists h ∈ H. Since H is closed under inverses, h−1 ∈ H where h−1 is the inverse in
G. Since H is closed under products, 1G = hh−1 ∈ H. 1G is also the identity for H. Finally, let h ∈ H. By
closure, h−1 ∈ H considering h−1 as the inverse of h in G, but h−1 is also the inverse in H.

Remark 1.7.8. If H ≤ G, then 1H = 1G, and for all h ∈ H, h−1 in G is h−1 in H.

Proposition 1.7.9 (Second subgroup criterion). Let G be a group and let H ⊆ G. H ≤ G if and only if
1. H 6= ∅, and
2. for all a, b ∈ H, ab−1 ∈ H.

Proposition 1.7.10 (Third subgroup criterion). Let G be a group. Let H be a nonempty finite subset of
G. If H is closed under taking products in G, then H is a subgroup.

Definition 1.7.11 (subgroup generated by a subset). Let G be a group and let S be a subset of G. Define
〈S〉 to be the set of all finite length products of S ∪ S−1. We call 〈S〉 the subgroup generated by S.

Remark 1.7.12. 〈S〉 is the smallest subgroup of G containing S. Furthermore, for all H ≤ G, S ⊆ H
implies 〈S〉 ≤ H, and

〈S〉 =
⋂
H≤G
S⊆H

H.

Definition 1.7.13 (centralizer). Let G be a group. Let A ⊆ G. Define CG(A) = {g ∈ G | gag−1 =
a for all a ∈ A} to be the centralizer of A in G.

Remark 1.7.14. The equation gag−1 = a is equivalent to the commutativity condition ga = ag.

Definition 1.7.15 (center). Define Z(G) = CG(G) = {g ∈ G | gag−1 = a for all a ∈ G} to be the center
of G.

Definition 1.7.16 (normalizer). Define NG(A) = {g ∈ G | gAg−1 = A} to be the normalizer of A in G.
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Definition 1.7.17 (stabilizer). Let G act on S. Let s ∈ S. Define Gs = {g ∈ G | g · s = s} to be the
stabilizer of s.

Lemma 1.7.18. For any group G, any action on S, and any s ∈ S, the stabilizer Gs is a subgroup of G.

Proof. By Lemma 1.7.7 [First subgroup criterion]. Gs is not empty since 1 ∈ Gs. Gs is closed under
products since if g · s = s and h · s = s, then (gh) · s = g(h · s) = g · s = s. Finally, Gs is closed under taking
inverses since if g · s = s, then g−1 · s = g−1(g · s) = (g1g) · s = 1 · s = s.

Lemma 1.7.19. For any group G and any subset A ⊆ G, CG(A) is a subgroup of G.

Proof. Define c : G × G → G by c(g, h) = ghg−1. This is the conjugation action of G on G, sometimes
written hg. To see this is an action, observe that c(1, h) = 1h1−1 = h, and if a, b ∈ G and h ∈ G, then
c(a, c(b, h)) = c(a, bhb−1) = abhb−1a−1, and c(ab, h) = abh(ab)−1 = abhb−1a−1. Thus c is a group action.

Now observe that CG({a}) = Ga, so by Lemma 1.7.18, CG({a}) is a subgroup of G.
Next, for any set A,

CG(A) =
⋂
a∈A

CG({a}).

Using the fact that arbitrary intersections of subgroups are subgroups, CG(A) is a subgroup of G.

Corollary 1.7.20. The center Z(G) = CG(G) is a subgroup of G.

Lemma 1.7.21. For any group G and A ⊆ G, NG(A) is a subgroup of G.

Proof. For g ∈ G, let gAg−1 = {gag−1 | a ∈ A}. This defines a group action α : G× P(G)→ P(G) defined
by α(g,A) = gAg−1. Recall that NG(A) = {g ∈ G | gAg−1 = A}, so NG(A) = GA under the conjugation
action on subsets. By Lemma 1.7.18, NG(A) is a subgroup of G.

Example 1.7.22. In D2n, D2n acts on {1, . . . , n}. By Example 1.11.16 to come or by direct computation,
the stabilizer of 1, (D2n)1 = {1, s} as these are the only actions that fix 1.

Example 1.7.23. To determine the centralizers of a group, often one simply makes a list. In D2n, CD2n
(r) =

〈r〉. If n = 2m, then CD2n
(s) = 〈s, rm〉, as srms = r−m = rm, while if n = 2m+ 1, CD2n

(s) = 〈s〉.

Example 1.7.24. If n = 2m, then Z(D2n) = 〈rm〉, as it is the intersection of CD2n
(r) and CD2n

(s). If
n = 2m+ 1, then Z(D2n) = {1}.

Example 1.7.25. If G is abelian and A ⊆ G, then Z(G) = G, CG(A), and NG(A) = G.

Example 1.7.26.

ND2n(〈s〉) =

{
〈s〉 if n is odd;

〈s, rm〉 if n is even.

ND2n(〈r〉) = D2n.

Example 1.7.27. CSn(σ) is complicated. If |A| < ∞, σ has a finite disjoint cycle decomposition. It is
easier to see that if |A| ≥ 3, then Z(Sym(A)) = {1}.

Definition 1.7.28 (cyclic subgroup). Let G be a group. Let x ∈ G. Then 〈x〉 = {xn | n ∈ N} is the cyclic
subgroup generated by x.

Definition 1.7.29 (cyclic group). If there is x ∈ G such that G = 〈x〉, then we say that G is cyclic.

Remark 1.7.30. Cyclic groups are abelian.

Lemma 1.7.31. If x ∈ G and H = 〈x〉, then |H| = |x|.

Proof. Observe that H = {1, x, . . . , xn−1} if |x| = n, and H = {. . . , x−1, 1, x, . . .} if |x| =∞. Notice that H
is at most countable by definition.
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Lemma 1.7.32. If xn = 1 and xm = 1, then xd = 1 where d = gcd(m,n).

Proof. If d = gcd(m,n), then there exist a, b ∈ Z such that d = am+ bn. Simply compute:

xd = xam+bn = (xm)a(xn)b = 1.

Theorem 1.7.33 (The classification of cyclic groups). Let G be cyclic; G = 〈x〉 for some x.
1. |G| is a positive integer or countable infinity.
2. Cyclic groups are isomorphic if and only if they have the same order.

Proof. Note that 1. is obvious. For 2., there are two cases:
• Case One: If |G| =∞, then define ϕ : Z→ G by ϕ(k) = xk. See that ϕ is a homomorphism by power

rules: xkx` = xk+`. Furthermore, ϕ is surjective, by definition of 〈x〉. Also, ϕ is injective. If ϕ(k) = 1,
then xk = 1. If k 6= 0, then |x| ≤ |k| <∞, a contradiction. Thus k = 0, so kerϕ = {0}. Hence, G ∼= Z,
and any two cyclic subgroups of order ∞ are isomorphic via an isomorphism factored through Z.

• Case Two: If |G| = n < ∞, then defined ϕ : Z/nZ → G by ϕ([k]) = xk. To see ϕ is well-defined,
assume k and ` are two representatives of [k]. Then n divides k − `, so there exists m ∈ Z such that
k − ` = mn. Then xk = xmn+` = (xn)mx` = x`. So ϕ is well-defined. Now, ϕ is a homomorphism as
ϕ([k] + [`]) = ϕ([k + `]) = xk+` = xkx` = ϕ([k])ϕ([`]). Also ϕ is surjective by definitions of 〈x〉, and
ϕ is injective, since if ϕ([k]) = 1, then xk = 1. As xk = 1 and xn = 1, xd = 1 where d = gcd(k, n) by
Lemma 1.7.32. Since n = |x|, n = d. Thus, n divides k, so [k] = [0] and kerϕ = {[0]}. Therefore
G ∼= Z/nZ, and any two cyclic subgroups of order n are isomorphic via an isomorphism factored
through Z/nZ.

Lemma 1.7.34. Suppose G is a group and x ∈ G.
1. If |x| =∞, then for all a ∈ Z \ {0}, |xa| =∞.
2. If |x| = n < ∞, then for all a ∈ Z, |xa| = n/ gcd(n, a). If a divides n and a > 0, then gcd(n, a) = a,

so |xa| = n/a.

Proof. This follows straight from the definitions.

Example 1.7.35. In Z/6Z, |1| = 6, |2| = 3, |3| = 2, |4| = 3, and |5| = 6.

Lemma 1.7.36. Suppose H = 〈x〉.
1. If |x| =∞, then H = 〈xa〉 if and only if a = ±1.
2. If |x| = n <∞, then H = 〈xa〉 if and only if gcd(a, n) = 1. In particular, the number of choices of xa

where H = 〈xa〉 is ϕ(n) = |{k | 1 ≤ k ≤ n and gcd(k, n) = 1}|, the Euler ϕ-function.

Proof. Follows from Lemma 1.7.34.

Example 1.7.37. Let G = Z/24Z. We see that ϕ(24) = ϕ(8)ϕ(3), as gcd(8, 3) = 1, and ϕ(8)ϕ(3) = 4·2 = 8.
The explicit elements that work to generate G = Z/24Z are 1, 5, 7, 11, 13, 17, 19, and 23, of which there
are eight.

Theorem 1.7.38. Suppose H = 〈x〉. Then
1. Every subgroup of H is cyclic.
2. If K ≤ H, then K = 〈xd〉 where d is the smallest positive integer with xd ∈ K, unless K = {0}.
3. If |H| = ∞, then there is a bijective correspondence between subgroups of H and the nonnegative

integers, given by n 7→ 〈xn〉.
4. If |H| = n < ∞, then there is a bijective correspondence between subgroups of H and the positive

divisors of n, given by a 7→ 〈xa〉, where a divides n and n > 0.

Proof. Here, we only prove 1. Let H = 〈x〉 and K ≤ H with K 6= {0}. Let d ∈ Z be the smallest positive
integer such that xd ∈ K. Clearly 〈xd〉 ⊆ K. We would like to show K ⊆ 〈xd〉. Let g ∈ K. Then g ∈ H,
and so there is n ∈ Z such that g = xn. Divide n by d. By the division algorithm, there exist p, q ∈ Z such
that n = dp + r and 0 ≤ r < d. As xn ∈ K and xd ∈ K, and r = n − pd, we have xr = xn(xd)−p ∈ K.
If r 6= 0, then r < d contradicts the fact that d is minimal. Thus r = 0, so n = dp, and xn = (xd)p. Thus
xn ∈ 〈xd〉. Therefore K = 〈xd〉, and every subgroup of H is cyclic.
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Remark 1.7.39. Given a finite group, one can
• enumerate all the cyclic subgroups,
• enumerate the subgroups generated by small subsets, and
• prove that larger subsets generate the entire group.

Example 1.7.40. Consider the group Z/6Z. We know that the divisors of 6 are 1, 2, 3, and 6, so we may
draw a lattice of subgroups like so:

〈1〉

〈2〉 〈3〉

〈6〉

The lines are inclusions, and the number of elements decreases as you go down. Note that this is exactly the
lattice of divisibility by Theorem 1.7.38 part 4.

6

3 2

1

Note that the dotted line is optional, as it can be deduced from the other lines.

Example 1.7.41. Consider Z/8Z. The divisors of 8 are 1, 2, 4, and 8. Since 8 is a power of a prime, the
lattice is uninteresting:

〈1〉 8

〈2〉 4

〈4〉 2

〈8〉 1

Indeed, in the case that G = Z/pkZ where p is prime, the lattice of subgroups of G is just a tower.

Example 1.7.42. In general, the lattice can be seen to be cubes of high dimensions. If our group is Z/30Z,
then as 30 = 2 · 3 · 5, we have

〈1〉

〈2〉 〈3〉 〈5〉

〈6〉 〈10〉 〈15〉

〈30〉
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which is a cube. The lattice for Z/360Z is also a cube, since 360 = 8 · 9 · 5. The difference is that the edges
of the cube will be subdivided into nodes since 8 = 23 and 9 = 32; that is, “viewing from only one angle”
and not “subdividing faces” so as to keep the picture tidier,

〈1〉

〈5〉 〈2〉

〈15〉 〈10〉 〈4〉

〈45〉 〈20〉 〈8〉

〈90〉 〈40〉 〈24〉

〈180〉 〈120〉 〈72〉

〈360〉

Example 1.7.43. What about the lattice of subgroups of a general group; i.e., what if G is not cyclic? Let
G = S3. The cyclic subgroups of S3 are 〈(1, 2, 3)〉, 〈(1, 2)〉, 〈(1, 3)〉, 〈(2, 3)〉, and 〈∅〉. Observe that all set of
two elements where neither is trivial and not inverses of each other will generate S3. All subgroups of S3 are
cyclic, even though S3 is nonabelian.

S3

〈(1, 2)〉 〈(1, 3)〉 〈(2, 3)〉 〈(1, 2, 3)〉

{(1)}

Example 1.7.44. Consider D8 = 〈r, s〉. The cyclic subgroups are 〈r〉, 〈s〉, 〈sr〉, 〈sr2〉, 〈sr3〉, 〈r2〉, and {1}.
The noncyclic subgroups are 〈r2, s〉 ∼= (Z/2Z)2 and 〈r2, sr〉. This turns out to be exhaustive.

D8

〈r2, sr〉 〈r〉 〈r2, s〉

〈sr〉 〈sr3〉 〈r2〉 〈s〉 〈sr2〉

{1}

Example 1.7.45. The lattice of subgroups of Q8 is
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Q8

〈i〉 〈j〉 〈k〉

〈−1〉

{1}

Proposition 1.7.46. Let ϕ : G→ H be a homomorphism of groups. Then
1. ϕ respects identities, inverses, and exponents,
2. imϕ is a subgroup of H, and
3. kerϕ is a subgroup of G.

Lemma 1.7.47. Let ϕ : G→ H. kerϕ = {1} if and only if ϕ is injective.

Proof. First, if ϕ is injective, then at most one element is in kerϕ. Since 1 ∈ kerϕ by Proposition 1.7.46,
kerϕ = {1}.

Now, let g, h ∈ G and assume ϕ(g) = ϕ(h). Then ϕ(g)ϕ(h)−1 = 1, so ϕ(gh−1) = 1, and gh−1 ∈ kerϕ =
{1}, so gh−1 = 1, and thus g = h.

1.8 Quotients

Definition 1.8.1 (group quotient by kernel). Suppose ϕ : G→ H is a homomorphism with kernel K. Then
the set of fibers of ϕ (point preimages) forms a group, denoted G/K.

Definition 1.8.2 (fiber). Let ϕ : G → H. We define a fiber x ∈ G/K to be a subset of G such that
x = ϕ−1({h}) for some h ∈ H.

Remark 1.8.3. The product on G/K is defined by ϕ−1({g})ϕ−1({h}) = ϕ−1({gh}). Note that ϕ−1({g})
determines a fiber uniquely. Thus the product is well-defined.

Example 1.8.4. Define ϕ : R2 → R by ϕ(x, y) = x. This is a homomorphism, as it is linear. Let
K = kerϕ = {(0, y) | y ∈ R}. Then R/K is illustrated by the following picture:

R2

R • •
0 1

ϕ−1({0}) ϕ−1({1})

One can observe that ϕ−1({n}) = {(n, y) | y ∈ R} ∈ R2/K, and R2/K ∼= R.

Lemma 1.8.5. Let G be a group. Suppose ∼ is an equivalence relation on G such that for all a, b, c, d ∈ G,
if a ∼ b and c ∼ d, then ac ∼ bd. Set N = {a ∈ G | a ∼ 1}.

1. N is a normal subgroup of G, and
2. a ∼ b if and only if aN = bN .

Remark 1.8.6. We want to define a product on G/ ∼ by [a][c] = [ac]. The hypotheses in Lemma 1.8.5
ensure this.
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Definition 1.8.7 (normal subgroup). N is a normal subgroup of G, written N E G, if for all g ∈ G,
gNg1 = N .

Definition 1.8.8 (coset). Let H ≤ G. The left coset of H by g ∈ G is the set gH = {gx | x ∈ H}. The
right coset Hg is defined similarly, but not often used.

Remark 1.8.9. If ϕ : G→ H is a homomorphism, then ∼ on G defined by a ∼ b if and only if ϕ(a) = ϕ(b)
is an equivalence relation that satisfies the hypotheses in Lemma 1.8.5.

Proof of Lemma 1.8.5, part 1. We need to show N as defined is a normal subgroup. For N ≤ G, 1 ∈ N
since 1 ∼ 1. Next, let a ∈ N . We show that a−1N . Since a ∼ 1 and a−1 ∼ a−1, we have a−1a ∼ a−11,
so a−1 ∼ 1, and thus a−1 ∈ N . Finally, let a, b ∈ N . We show ab ∈ N . Since a ∼ 1 and b ∼ 1, we get
ab ∼ 1 · 1 = 1. Thus ab ∈ N , and N ≤ G as claimed.

To see that N is normal, let g ∈ G and let a ∈ N . Then a ∼ 1, g ∼ g, and g−1 ∼ g−1, so we see that
gag−1 ∼ g1g−1 = 1. Thus, gag−1 ∈ N , and hence gNg−1 ⊆ N . For the other inclusion, switch g with g−1

to see that g−1Ng ⊆ N , and therefore N = g(g−1Ng)g−1 ⊆ gNg−1. Thus, gNg−1 = N , so N E G, as
desired.

Lemma 1.8.10. If ϕ : G→ H is a homomorphism, then kerϕ E G.

Proof. We know kerϕ ≤ G by Proposition 1.7.46. Let g ∈ G and let a ∈ kerϕ. Since ϕ(a) = 1, we see
that

ϕ(gag−1) = ϕ(g)ϕ(a)ϕ(g)−1 = 1.

Thus for all g ∈ G, g kerϕg−1 ⊆ kerϕ. It the follows that g kerϕg−1 = kerϕ by the argument in the proof
of Lemma 1.8.5; switch g and g−1.

Proposition 1.8.11. Let H ≤ G. Let x, y ∈ G. The following are equivalent.
1. x and y are in the same coset of H,
2. x ∈ yH,
3. y ∈ xH,
4. xH = yH,
5. y−1x ∈ H, and
6. x−1y ∈ H.

Remark 1.8.12. Cosets are orbits (Definition 1.11.6), which are equivalence classes that partition a
group. They are hence either completely disjoint or completely equal.

Proposition 1.8.13. Let N ≤ G. The following are equivalent.
1. N E G; i.e., for all g ∈ G, gNg−1 = N ,
2. NG(N) = G,
3. for all g ∈ G, gN = Ng, and
4. for all g ∈ G, gNg−1 ⊆ N .

Lemma 1.8.14. Suppose G = 〈S〉 and N ≤ G where N = 〈T 〉. Suppose for all s ∈ S and t ∈ T , sts−1 ∈ N
and s−1ts ∈ N . Then N E G.

Proof. Use condition 4 in Proposition 1.8.13. Let g ∈ G and let a ∈ N . We wish to show gag−1 ∈ N .
Since g = s1

p1 · · · snpn and a = t1
q1 · · · tmqm ,

gag−1 = s1
p1 · · · snpnt1q1 · · · tmqmsn−pn · · · s1

−p1

= s1
p1 · · · snpnt1q1sn−pn · · · snpntmqmsn−pn · · · s1

−p1

= · · ·

Proceed via induction.
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Proof of Lemma 1.8.5, part 2. Suppose a, b ∈ G and a ∼ b. We need to show aN = bN , so we proceed via
a double inclusion argument. Let g ∈ aN . Let x ∈ N such that g = ax. Notice that g = bb−1ax = b(b−1ax).
Since a ∼ b, b−1a ∼ 1, so b−1a ∈ N . Hence b(b−1ax) ∈ bN . Thus aN ⊆ bN . But by symmetry, aN ⊇ bN ,
so aN = bN .

In the other direction, suppose aN = bN . Then ba−1 ∈ N , so b−1a ∼ 1, and thus a ∼ b, as desired.

Remark 1.8.15. Lemma 1.8.5 is handy for motivating normal subgroups; it says we should consider
normal subgroups and quotients rather than equivalence relations, though equivalence relations may at first
seem more natural.

Definition 1.8.16 (quotient group). Let G be a group and N E G a normal subgroup. Define the quotient
group G/N = {gN | g ∈ G}. Define a product G/N ×G/N → G/N by (gN)(hN) = (gh)N .

Definition 1.8.17 (canonical projection). Let N E G. Define the canonical projection π : G→ G/N by
π(g) = gN .

Lemma 1.8.18. The product on G/N is well-defined.

Proof. Let a, b, c, d ∈ G and assume aN = bN and cN = dN . We need to show (ac)N = (bd)N .
Since aN = bN and cN = dN , we know that a−1b, c−1d ∈ N . We can therefore show (ac)−1(bd) ∈ N .

To see thism we have c−1a−1bd = c−1a−1bcc−1d. Since a−1b ∈ N and c−1a−1bc is a conjugation of a−1b,
c−1a−1bc ∈ N because N is normal. Since c−1d ∈ N , the product (c−1a−1bc)(c−1d) ∈ N , as desired.

Theorem 1.8.19. G/N is a group under the product that descended from G, and π : G → G/N is a
surjective homomorphism with kerπ = N .

Proof. G/N is associative because π is a homomorphism and G is a group:

(gNhN)kN = (π(g)π(h))π(k)

= π(gh)π(k)

= π(ghk)

= π(g)π(hk)

= π(g)(π(h)π(k))

= gN(hNkN).

The identity in G/N is 1N , which follows from the definition. Finally, for inverses, for all gN ∈ G/N , if
hN = g−1N , then hN is the inverse for gN .

π is trivially surjective, and by the fact that if g, h ∈ G, then

π(gh) = (gh)N = (gN)(hN) = π(g)π(h),

π is a homomorphism. To show the claim that kerπ = N , use a double inclusion argument. First, if g ∈ N ,
then π(g) = gN = 1N , since 1−1g ∈ N . Thus g ∈ kerπ. On the other hand, if g ∈ kerπ, then π(g) = 1N ,
so gN = 1N and thus 1−1g ∈ N , so g ∈ N .

Corollary 1.8.20. Every normal subgroup of a group is the kernel of some homomorphism.

Remark 1.8.21. A priori, the computation π(gh) = π(g)π(h) above shows that π : G → G/N is a
homomorphism of magmas.

Definition 1.8.22 (magma). A magma is a set with a binary product.

☡ Warning! 1.8.23. If N E H and H E G, that it is not necessarily the case that N E G.

Example 1.8.24. Consider the case that G = D8 and H = 〈r2, s〉. Here H E G. If N = 〈s〉, then N E H,
as H is abelian. But N 6E G, and rsr−1 = r2s 6∈ N .
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Example 1.8.25. Let G = D8 and N = 〈r2〉. Then N E G. Hence

G�N = {gN | g ∈ G}
= {{1, r2}, {r, r3}, {s, sr2}, {sr, sr3}}
= {[1], [r], [s], [sr]}
= {1N, rN, sN, srN}.

We can write the multiplication table of G/N .

G�N 1 r s sr
1 1 r s sr
r r 1 sr s
s s sr 1 r
sr sr s r 1

By observation, D8/〈r2〉 ∼= (Z/2Z)2.

1.9 The Index of a Group and Lagrange’s Theorem

Theorem 1.9.1 (Lagrange’s Theorem). Let G be a group and H a subgroup of G. Then |H| divides |G|,
and the number of left cosets of H in G is |G|/|H|.

Remark 1.9.2. gH = {gh | h ∈ H} is the orbit of g under the action ofH onG on the right by multiplication
(Definition 1.11.6). Cosets/orbits partition the group/set, and cosets are in bijection with each other.

Definition 1.9.3 (index). Let G be a group and H ≤ G. The index of H in G is the number of left cosets
of H in G, written |G : H| or [G : H].

Remark 1.9.4. Thus Theorem 1.9.1 [Lagrange’s Theorem] states that [G : H] = |G|/|H|.

☡ Warning! 1.9.5. Theorem 1.9.1 [Lagrange’s Theorem] is not true for monoids (recall Definition
1.2.8)! The fact that cosets are in bijection relies on the existence of inverses.

Corollary 1.9.6. Let G be a group and let x ∈ G. Then |x| divides |G|. If |G| <∞, then x|G| = 1.

Proof. Observe that |x| = |〈x〉|. By Theorem 1.9.1 [Lagrange’s Theorem], |〈x〉| divides |G|.

Corollary 1.9.7. If p is prime and G is a group with order p, then G is cyclic and therefore G ∼= Z/pZ.

Proof. Since p is prime, p ≥ 2, so G\{1} 6= ∅. Let x ∈ G\{1}. Consider 〈x〉 ≤ G. Since x 6= 1, |〈x〉| > 1. By
Theorem 1.9.1 [Lagrange’s Theorem], |〈x〉| divides |G| = p, a prime. Therefore |〈x〉| = p, so 〈x〉 = G,
and hence G is cyclic. By Theorem 1.7.33 [The classification of cyclic groups], G ∼= Z/pZ.

Remark 1.9.8. The strongest possible converse to Theorem 1.9.1 [Lagrange’s Theorem] fails; there is
a group of order 12 with no subgroup of order 6. Let

A4 = {σ ∈ S4 | the cycle decomposition of σ is (•, •, •), (•, •)(•, •), or (1)}.

A4 is a group, and |A4| = 12 via counting arguments. To see that A4 is a group, you can look at even/odd
permutations (Definitions 1.12.35 and 1.12.36), or we can look at permutation matrices; e.g., (1, 2, 3)
corresponds to 

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 .
We have homomorphisms ϕ : Sn → GLnF and det : GLnF → {−1, 1}. Then A4 is the kernel of the
composition of these homomorphisms, and thus a group. One can check that any two 3-cycles that are not
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inverses of each other, or any 3-cycle and any cycle of the form (•, •)(•, •) generate A4. Show that each form
can generate 7 elements, and therefore by Theorem 1.9.1 [Lagrange’s Theorem], all of A4.

We can therefore enumerate all subgroups by generating sets. If our generating set includes two 3-cycles
or a 3-cycle and (•, •)(•, •), then it will be A4. If not, they will be too small; i.e., A4 only has subgroups of
order 1, 2, 3, 4, and 12. No subgroup of order 6 exists.

There are, however, special case converses: Theorem 1.9.11 [Cauchy’s Theorem] and Theorem
1.9.12 [Sylow’s Theorem] are two such, to come.

Theorem 1.9.9. If H ≤ G and [G : H] = 2, then H E G.

Proof. Cosets of H in G are H = 1H and G \H = xH for any x 6∈ H. Thus we can classify the cosets by
membership of H alone and need not reference left multiplication at all. Therefore, for all x ∈ G, xH = Hx,
and by Proposition 1.8.13, condition 3, H is normal in G.

Remark 1.9.10. We can use Theorem 1.9.9 to prove the claims in Remark 1.9.8 as well. Suppose
H ≤ A4 and that |H| = 6. Then by Theorem 1.9.9, H E A4. There exists at least one (a, b, c) ∈ H.
Since H is normal, for all σ ∈ A4, σ(a, b, c)σ−1 ∈ H, but σ(a, b, c)σ−1 = (σ(a), σ(b), σ(c)). Therefore we
can conclude that in a normal subgroup of A4, if we have one 3-cycle, then we have many, and thus we can
deduce that |H| ≥ 7, a contradiction.

Theorem 1.9.11 (Cauchy’s Theorem). If |G| < ∞ and p is a prime such that p divides |G|, then there
exists x ∈ G such that |x| = p (and thus p = |〈x〉| for 〈x〉 ≤ G).

Theorem 1.9.12 (Sylow’s Theorem). If p is prime, a ∈ Z, |G| < ∞, pa divides |G|, and pa+1 does not
divide |G|, then there exists H ≤ G such that |H| = pa.

Furthermore, if G is abelian, then if n divides |G|, then G does have a subgroup of order n.
Additionally, if |G| = pn for a prime p, then there is a subgroup of any order that divides pn.

Definition 1.9.13 (concatenation set). If H,K ≤ G, then define HK = {hk | h ∈ H, k ∈ K}.

☡ Warning! 1.9.14. In general, HK 6≤ G and HK 6= 〈H ∪K〉.

Example 1.9.15. Let G = S3, H = 〈(1, 2)〉, and K = 〈(2, 3)〉. Then HK = {(1), (1, 2), (2, 3), (1, 2, 3)}.
Note that |HK| = 4, and 4 does not divide |S3| = 6, so by Theorem 1.9.1 [Lagrange’s Theorem],
HK 6≤ S3.

Remark 1.9.16. Notice that

HK =
⋃
h∈H

hK.

Lemma 1.9.17. Let H,K ≤ G. Then

|HK| = |H| · |K|
|H ∩K|

.

Proof. By Remark 1.9.16,

|HK| =

∣∣∣∣∣ ⋃
h∈H

hK

∣∣∣∣∣ = x|K|,

where x is the number of distinct cosets hK for h ∈ H. There are |H| formal expressions hK, but given
h1 ∈ H, how many h2 ∈ H exist such that h1K = h2K?

Suppose h1K = h2K. This is the case if and only if h2
−1h1 ∈ K, if and only if h2

−1h1 ∈ H ∩K, if and
only if h1(H ∩K) = h2(H ∩K), if and only if h2 ∈ h1(H ∩K).

Thus, the number of choices of h2 satisfying above is |h1(H∩K)| = |H∩K|. Therefore, x = |H|/|H∩K|.
This is an integer by Theorem 1.9.1 [Lagrange’s Theorem]. Therefore, the result is shown.

Lemma 1.9.18. Let H,K ≤ G and suppose H ≤ NG(K). We say that H normalizes K. (By right-left
symmetry, K can normalize H too.) If H normalizes K, then HK ≤ G.

19



Proof. By Lemma 1.7.7 [First subgroup criterion].
1 = 1 · 1 ∈ HK, so HK 6= ∅.
Next, suppose h1, h2 ∈ H and k1, k2 ∈ K. We wish to show h1k1h2k2 ∈ HK. Observe

h1k1h2k2 = h1h2h2
−1k1h2k2

= (h1h2)((h2
−1k1h2)k2).

Since H ≤ NG(K), h2
−1k1h2 ∈ K. Since H and K are groups, h1h2 ∈ H and (h2

−1k1h2)k2 ∈ K. Thus,
h1k1h2k2 ∈ HK.

Finally, suppose h ∈ H and k ∈ K. Then

(hk)−1 = k−1h−1 = h−1hk−1h−1 = h−1(hk−1h−1) ∈ HK,

since h−1 ∈ H, k−1 ∈ K as H and K are groups, and hk−1h−1 ∈ K as H ≤ NG(K).
Thus, HK ≤ G, as claimed.

1.10 The Isomorphism Theorems

Theorem 1.10.1 (The First Isomorphism Theorem). Suppose ϕ : G→ H is a homomorphism. Then

G�kerϕ
∼= ϕ(G).

Proof. The proof will follow from the following stronger result in Lemma 1.10.2.

Lemma 1.10.2. Suppose ϕ : G→ H is a homomorphism. Then let K = kerϕ, and we have a commutative
diagram

G H

G�K ϕ(G)

ϕ

π

ϕ

∼

i

There is an isomorphism ϕ : G/K → ϕ(G) such that the diagram commutes; i.e., ϕ = i ◦ ϕ ◦ π.

Proof. Define ϕ : G/K → ϕ(G) by ϕ(aK) = ϕ(a). This is well-defined, as if aK = bK, then ϕ(aK) = ϕ(a)
and as a−1b ∈ K, ϕ(a) = ϕ(a)ϕ(a−1b) = ϕ(aa−1b) = ϕ(b) = ϕ(bK).

Furthermore, ϕ is a homomorphism, since ϕ(aKbK) = varphi(abK) = ϕ(a)ϕ(b) = ϕ(aK)ϕ(bK). Also,
ϕ is surjective by construction, and injective because kerϕ = {e}.

All that remains follow from the fact that indeed

(i ◦ ϕ ◦ π)(a) = (i ◦ ϕ)(aK) = i(ϕ(a)) = ϕ(a).

Remark 1.10.3. If you know all normal subgroups of G, all subgroups of H, and all isomorphisms between
quotients of G and subgroups of H, then you know all homomorphisms G → H. For instance, one could
find all homomorphisms from Q8 to D8, of which there are many.

Example 1.10.4. Suppose p and q are prime numbers. Suppose that ϕ : Z/pZ→ Z/qZ is a homomorphism.
Then either ϕ is trivial, i.e., constantly 0, or p = q and ϕ is an isomorphism. To see this, note that the only
subgroups of Z/pZ are {0} and Z/pZ, by Theorem 1.9.1 [Lagrange’s Theorem]. Similarly for q. There
are two cases for kerϕ. If kerϕ = Z/pZ, then ϕ is trivial. If kerϕ = {0}, then ϕ is an embedding; i.e., it
is injective. Thus Z/qZ has a subgroup isomorphic to Z/pZ. Since p > 1, ϕ(Z/pZ) 6= {0}, so p = q and
therefore ϕ(Z/pZ) = Z/qZ, so ϕ is surjective too.

Theorem 1.10.5 (The Second Isomorphism Theorem). Suppose A,B ≤ G and A ⊆ NG(B). Then AB ≤ G,
B E AB, A ∩B E A, and

AB�B ∼=
A�A ∩B.
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Proof. First, note that AB ≤ G follows from Lemma 1.9.18, and the normal subgroup claims are easy.
Next, define ϕ : A→ AB/B by ϕ(a) = aB. Then ϕ is well-defined, and ϕ is a homomorphism since

ϕ(a1a2) = a1a2B = a1Ba2B = ϕ(a1)ϕ(a2).

Notice that ϕ is surjective. To see this, let (ab)B ∈ AB/B; then a ∈ A, b ∈ B, and ϕ(a) = aB = (ab)B,
since (ab)−1a = b−1 ∈ B.

Finally, we show that kerϕ = A ∩ B. To see this, let x ∈ A ∩ B. Then ϕ(x) = xB = 1B, since
1−1x = x ∈ B. On the other hand, let x ∈ kerϕ ⊆ A. Also ϕ(x) = xB = 1B, so 1−1x ∈ B, and thus
x ∈ A ∩B.

Therefore, by Theorem 1.10.1 [The First Isomorphism Theorem], A/(A ∩B) ∼= AB/B.

Example 1.10.6. Let G = R3 with addition. Let A = spanR(e1, e3) and B = spanR(e2, e3). See that
A+B = {a+ b | a ∈ A, b ∈ B} = spanR(e1, e2, e3) = R3. (Note that A+B is the additive notation version
of AB.) Also see that A ∩B = spanR(e3). Thus

A+B�B = R3
�spanR(e2, e3) = R, and

A�A ∩B = spanR(e1, e3)�spanR(e3) = R.

For an explicit isomorphism, map A to (A+B)/B by xe1 +ye2 7→ (xe1 +ye2)+B. This is a homomorphism,
and the kernel is A ∩ B. Thus, by Theorem 1.10.1 [The First Isomorphism Theorem], we see that
A/(A ∩B) ∼= (A+B)/B.

Theorem 1.10.7 (The Third Isomorphism Theorem). Suppose H,K E G with K ≤ H. Then K E H and
H/K E G/K. Furthermore, (

G�K
)

(
H�K

) ∼= G�H.

Proof. The fact that K E H is obvious. Next, suppose hK ∈ H/K and gK ∈ G/K. To see H/K E G/K,
see that

(gK)(hK)(gK)−1 = (ghg−1)K ∈ H�K,

because ghg−1 ∈ H since H E G.
Finally, to show (G/K)/(H/K) ∼= G/H, define ϕ : G/K → G/H be ϕ(gK) = gH. ϕ is well-defined,

but not necessarily obviously so. To see that it is, suppose g1K = g2K. Then g2
−1g1 ∈ K. Since K ⊆ H,

g2
−1g1 ∈ H, so g1H = g2H. Now, ϕ is obviously surjective, and one can show that kerϕ = H/K. Via

an application of Theorem 1.10.5 [The Second Isomorphism Theorem], (G/K)/(H/K) ∼= G/H, as
desired.

Example 1.10.8. Let G = Z/8Z, N = 〈4〉, and H = 〈2〉. Then H/N E G/N , and (G/N)/(H/N) ∼= G/H.
We know that

G�N = {N, 1 +N, 2 +N, 3 +N} and

H�N = {N, 2 +N}.

Thus (
G�N

)
(
H�N

) =
{
H�N, (1 +N) +H�N

}
,

where (1 +N) +H/N = {1 +N, 3 +N} = {{1, 5}, {3, 7}}. Also, see that G/H = {H, 1 +H}.
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We are done as there is a unique group of order 2, but suppose we want to build an explicit isomorphism.
We wish to define ϕ : G/N → G/H by ϕ(gN) = gH. Why should this be well-defined? See that if gN = hN ,
then we claim gH = hH. Indeed, we know h−1g ∈ N and N ≤ H, so h−1g ∈ H, and therefore gH = hH,
as desired.

Note that ϕ(gN) = gH = πH(g), where πH is the quotient projection πH : G→ G/H. This leads to the
following result:

Lemma 1.10.9. Let Φ : G→ H be a homomorphism. Let N E G. Define ϕ : G/N → H by ϕ(gN) = Φ(g).
ϕ is well-defined if and only if N ≤ ker Φ. This is the universal property of a quotient.

G H

G�N

Φ

π
ϕ

Proof. Assume N ≤ ker Φ. Let g, h ∈ G such that gN = hN . We need to show that ϕ(gN) = ϕ(hN). Since
h−1g ∈ N ≤ ker Φ, Φ(h−1g) = 1H , so Φ(h)−1Φ(g) = 1H , and therefore Φ(g) = Φ(h), as desired.

The other direction follows via proof by contrapositive.

Theorem 1.10.10 (The Fourth Isomorphism Theorem). Let G be a group and N E G. There is a bijection
between

{H | H ≤ G,N ≤ H} ↔
{
K | K ≤ G�N

}
,

where H 7→ H/N . Moreover, this bijection respects all the structure of the subgroup lattice; i.e.,
• H1 ≤ H2 if and only if H1/N ≤ H2/N ,
• if so, [H2 : H1] = [H2/N : H1/N ],
• H1 E H2 if and only if H1/N E H2/N ,
• if so, H2/H1

∼= (H2/N)/(H1/N),
• (H1 ∩H2)/N = (H1/N) ∩ (H2/N),
• 〈H1 ∪H2〉/N = 〈(H1/N) ∪ (H2/N)〉.

Example 1.10.11. Let G = 〈a, b | a4 = 1, b4 = 1, bab−1 = a−1〉. One can check that as a set, we have
G = {aibj | i, j ∈ {0, 1, 2, 3}}, and |G| = 16. This is a twisted semidirect product (Definition ??) of Z/2Z
and Z/4Z. Let N = 〈a2b2〉. To see that N E G, observe that

aa2b2a−1 = a2bb2b−1 = a2b2,

a−1a2b2a = a2b2,

ba2b2b−1 = a2b−2 = a2b2, and

b−1a2b2b = a2b2,

so a2b2 is central. Next, G/N = 〈a, b | a4 = 1, b
4

= 1, bab
−1

= a−1, a2b
2

= 1〉. Realizing the relation a2b
2

= 1

as a2 = b
−2

and then as a2 = b
2
, we can see that G/N ∼= Q8 (Remark 1.4.2).

The lattice is

G�N

〈a〉 〈b〉 〈ab〉

〈a2〉

〈1〉

2
2

2

2
2

2

2
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where the numbers on each edge indicate the index (Definition 1.9.3) of the subgroup.
By Theorem 1.10.10 [The Fourth Isomorphism Theorem], we have an incomplete lattice

G

〈a, a2b2〉 〈b, a2b2〉 〈ab, a2b2〉

〈a2, a2b2〉

〈a2b2〉

〈1〉

2
2

2

2
2

2

2

2

The lattice is incomplete because we only see subgroups that contain a2b2. For instance, 〈a〉 does not appear.
Also, for instance, (G/N)/〈a2〉 ∼= (Z/2Z)2 ∼= G/〈a2, a2b2〉.

1.11 Group Actions

Definition 1.11.1 (group action). Let G be a group and let A be a set. An action of G on A is a function
G×A→ A, (g, a) 7→ ga, such that

1. for all g, h ∈ G and a ∈ A, g(ha) = (gh)a, and
2. for all a ∈ A, 1a = a.

Remark 1.11.2. Group actions are like scalar multiplication in vector spaces, but for groups.

Example 1.11.3. D2n acts on the vertices {1, . . . , n} by labeling vertices of the regular n-gon and applying
isometries. rk = k + 1 if k < n while rn = 1, and sk = n+ 2− k (mod n).

Example 1.11.4. Let G act on A. Let g ∈ G. Define σg : A → A by σg(a) = ga. Note that σg is a
permutation. Indeed, since σg ◦ σh = σgh, one has σg

−1 = σg−1 . Thus, σg is a bijection.
In fact, ϕ : G → Sym(A) defined by ϕ(g) = σg is a homomorphism. This is called the permutation

representation of the action. We can conclude from Example 1.11.3 that there is a homomorphism ϕ :
D2n → Sn defined by ϕ(r) = (1, 2, 3, . . . , n) and ϕ(s) = (1)(2, n)(3, n− 1) · · · (a, b), where

(a, b) =

{(
n
2 ,

n
2 + 1

)
if n is even;(

n+1
2 , n+1

2 + 1
)

if n is odd.

Lemma 1.11.5. Actions of G on A are in bijection with homomorphisms G→ Sym(A). Moreover, sending
the action to the permutation representation (Example 1.11.4) is the bijection.

Proof. Let ϕ : G→ Sym(A) be any homomorphism. Define a function G×A→ A by g ·a = (ϕ(g))(a). This
is an action.

Definition 1.11.6 (orbit). Let G act on A and let a ∈ A. The orbit of a is Ga = {ga | g ∈ G}.

Definition 1.11.7 (transitive action). Let G act on A. The action is transitive if there is only one orbit;
i.e., for all a ∈ A, Ga = A.

Definition 1.11.8 (kernel of a group action). Let G act on A. The kernel of the action is the subset
{g ∈ G | for all a ∈ A, g · a = a}.

Definition 1.11.9 (faithful action). Let G act on A. The action is faithful if its kernel is {1}.
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Remark 1.11.10. The kernel of the group action is the same as the kernel of the associated homomorphism.
That is, if α : G×A→ A is a group action, then the kernel of α is the kernel of the permutation representation
ϕ : G→ Sym(A) corresponding to α.

Example 1.11.11. Let G be any group. Let A be any set. Let ga = a for all g ∈ G and a ∈ A. This is a
group action, since g(ha) = a = (gh)a and 1 · a = a. It is called the trivial action. It is not transitive nor
faithful.

Example 1.11.12. Sn acts on {1, . . . , n} by σ · n = σ(n). To see this, (1) · n = n, and σ(τ · n) = (στ) · n.
Since (1, k) · 1 = k for all k, it follows that the action is transitive. It is also faithful, since the only way to
send {1, . . . , n} to {1, . . . , n} without shuffling is the identity function.

Example 1.11.13. Let F be a field and let V be an F -vector space. If F ∗ is the group F \ {0} under
multiplication, then F ∗ acts on V by scalar multiplication. This action is faithful. If v 6= 0, then s · v = v
implies s = 1. The action is transitive if and only if dimV = 1.

Example 1.11.14. GLnF acts on Fn be matrix-vector multiplication on the left. This action is not
transitive. The orbits are {0} and Fn \ {0}. This action is faithful.

Example 1.11.15. Let A = G. Define g · h = gh; i.e., the action is the group operation. We call this the
left regular action. It is both faithful and transitive.

We get a homomorphism ϕ : G→ Sym(G) which is an embedding (i.e., it is an injective homomorphism
onto its image). Cancellation makes the action faithful, and thus an embedding. This is Corollary 1.11.19
[Cayley’s Theorem], to come.

Example 1.11.16. Group actions can be visualized with graphs. For instance, consider D8 acting on
{1, 2, 3, 4} as the following graph.

•2 •1

•3 •4
r s

s

r

s

r

r

s

If there is an action where everything loops back, the action is not faithful. If your graph is connected, the
action is transitive. Hence D8 acting on {1, 2, 3, 4} is faithful and transitive.

Theorem 1.11.17. Let G be a group and let H be a subgroup of G. Let A = {xH | x ∈ G}. Let G act on
A by left multiplication; i.e., g · (xH) = (gx)H.

1. This action is transitive.
2. The stabilizer of 1H is G1H = H.
3. The kernel of this action is ⋂

a∈G
aHa−1.

Proof. For the first claim, let aH, bH ∈ A. We need to produce a g ∈ G such that gaH = bH. This occurs
if and only if b−1ga ∈ H. Let g = ba−1; then b−1ga = b−1ba−1a = 1 ∈ H.

For the second claim, notice that H ⊆ G1H , since h · 1H = hH = 1H, as 1−1h = h ∈ H. It remains to
see that G1H ⊆ H. Suppose g ∈ G1H , so g ·1H = 1H, and therefore gH = 1H, so 1−1g = g ∈ H, as desired.

For the third claim, we first show that GaH = aHa−1. Indeed, g ∈ aHa−1 if and only if there exists an
h ∈ H such that g = aha−1. If so, aha−1 · aH = ahH = aH, so g ∈ GaH . Conversely, gaH = aH if and
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only if a−1ga ∈ H. Thus there exists h ∈ H such that a−1ga = h, so g = aha−1, and therefore g ∈ aHa−1.
Thus GaH = aHa−1, and therefore the kernel of the action is⋂

a∈G
GaH =

⋂
a∈G

aHa−1,

as claimed.

Remark 1.11.18. Given any transitive action G acting on A, the action of G on A is the same as the action
of G on {gGa | g ∈ G}.

Corollary 1.11.19 (Cayley’s Theorem). Let G be a group. There is an injective group homomorphism
G→ Sym(G). Furthermore, if |G| = n, then G embeds in Sn.

Proof. The group G acts on G/{1} ≤ G by left multiplication. Let π : G → Sym(G) be the permutation
representation of the action (Example 1.11.4). This means that for all g ∈ G, π(g) ∈ Sym(G) such that
(π(g))(a) = g · a. By Theorem 1.11.17 with H = {1} and A = G/{1},

kerπ =
⋂
a∈G

a{1}a−1 = {1}.

Example 1.11.20. Consider D8. The permutation representation of D8 acting on itself is

π(r) = (1, r, r2, r3)(s, rs, r2s, r3s)

and

π(s) = (1, s)(r, r3s)(r2, r2s)(r3, rs).

Therefore by Corollary 1.11.19 [Cayley’s Theorem], 〈π(r), π(s)〉 ∼= D8 ≤ Sym(D8) ∼= S8.

Remark 1.11.21. One can check that D8 ≤ Sn for all n ≥ 4, but Q8 ≤ Sn for all n ≥ 8, and Q8 6≤ S7.

Example 1.11.22. The group Z acting on itself has permutation representation π : Z→ Sym(Z) such that
(π(1))(n) = n+ 1.

Corollary 1.11.23. If |G| = n, H ≤ G, and |G : H| = p, where p is the smallest prime dividing n, then
H E G.

Proof. Let π : G → Sp be the permutation representation. Let A = {gH | g ∈ G}. We have |A| = p by
Theorem 1.9.1 [Lagrange’s Theorem]. Furthermore, π : G→ Sp ∼= Sym(A). Let K = kerπ. See that

|G : K| = |G : H| · |H : K| = pk

for k ∈ Z. By Theorem 1.10.1 [The First Isomorphism Theorem], G/K is isomorphic to a subgroup
of Sp, and |G/K| = pk. So |G/K| divides |Sp|, so pk divides p!, and hence k divides (p− 1)!. Since

|G| = |G : {1}| = |G : K| · |K : {1}| = pk · |K| = n,

k divides n as well. By hypothesis, p is the smallest prime dividing n, so k must be 1. Since k = |H : K|,
K = H, and thus H = kerπ. Therefore H E G, as desired.

Corollary 1.11.24 (Alternate proof of Theorem 1.9.9). If G is finite, H ≤ G, and |G : H| = 2, then
H E G.

Example 1.11.25. If |G| = 21, H ≤ G, and |H| = 7, then H E G, since |G : H| = 3 which is the smallest
prime dividing 21.
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Theorem 1.11.26 (The Orbit Stabilizer Theorem). Let G act on A. Let x ∈ A. The orbit Gx has size
equal to |G : Gx|.

Proof. Let H = Gx, and let B = {gH | g ∈ G}. Define a function ϕ : B → Gx where ϕ(gH) = gx. To see
this function is well-defined, suppose aH = bH, so that b−1a ∈ H = Gx. Since H is a group, a−1b ∈ H.
Now

ϕ(aH) = ax = a(a−1bx) = (aa−1b)x = bx = ϕ(bH),

so ϕ is well-defined.
It is enough to show that ϕ is a bijection, for then |B| = |G : Gx|. We will first show that ϕ is a surjection.

Let y ∈ Gx. There exists g such that y = gx, so y = ϕ(gH). Now see that ϕ is an injection. Suppose aH
and bH are in B such that ϕ(aH) = ϕ(bH). So ax = bx, and therefore b−1ax = x, so b1a = 1 ∈ Gx = H.
Thus aH = bH, as we needed to show.

Corollary 1.11.27. Let s ∈ G, and let [s] be the conjugacy class of s. The size of the conjugacy class |[s]| is
equal to |G : CG(s)|. Furthermore, let S ⊆ G. The size of the conjugation orbit |GS| is equal to |G : NG(S)|.
If G is finite, then |[s]| and |GS| divide |G|.

1.12 Series and Extensions

Definition 1.12.1 (simple). A group G is simple if the only normal subgroups of G are G itself and {1}.

Example 1.12.2. If p is a prime number, then Z/pZ is simple. Conversely, if G is abelian, then G is
isomorphic to Z/pZ for some prime p; i.e., all abelian simple groups are of this form.

Example 1.12.3. Let F be a field. Let N = {cIn | c ∈ F, c 6= 0} ≤ GLnF . Define the projective special
linear group PSLnF := SLnF/(SLnF ∩N) (recall Definition 1.5.4). Except in the cases where n = 2 and
|F | ∈ {2, 3}, PSLnF is a nonabelian simple group. If |F | =∞, then |PSLnF | may be infinite.

Definition 1.12.4 (alternating group). We define the alternating group of order n to be the subgroup
of Sn consisting of even permutations.

Example 1.12.5. If n ≥ 5, then An is a nonabelian simple group of order n!/2. See Remark 1.12.39 and
Lemma 1.12.40 to come.

Remark 1.12.6. If N E G, one can study G by studying N and G/N , as we will unpack soon. Thus,
simple groups are quickly understood via this approach, due to the lack of normal subgroups.

Definition 1.12.7 (subnormal series). Let G be a group. A subnormal series for G is a list of subgroups

{1} = G0 E G1 E · · · E Gn−1 E Gn = G.

Definition 1.12.8 (composition series). Given a group G, a subnormal series of G is called a composition
series if Gi+1/Gi is simple for all i ∈ {0, . . . , n− 1}.

Definition 1.12.9 (composition factor). Given a composition series of a group G, the quotients Gi+1/Gi
are called composition factors.

Definition 1.12.10 (solvable series). Given a group G, a subnormal series of G is called a solvable series
if Gi+1/Gi is abelian for all i ∈ {0, . . . , n− 1}.

Definition 1.12.11 (solvable group). If a group G has a solvable series, then we say that G is solvable.

Theorem 1.12.12 (Jordan-Hölder Theorem). If G is finite, then G has a composition series. If G has a
composition series, then any two composition series for G have the same length and composition factors with
multiplicity.
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Proof. For the first claim, we induct on the order of G. The base case |G| = 1 is trivial, as is |G| = 2. For
the inductive step, if G is simple, we are done. Otherwise, G has a proper nontrivial normal subgroup, and
G/N has order smaller than G, by Theorem 1.9.1 [Lagrange’s Theorem].

For the second claim, again proceed via induction on |G|, with base case |G| = 1 trivial. For the inductive
step, take two composition series of G,

{1} E H1 E H2 E · · · E Hk−1 E Hk = G

and

{1} E K1 E K2 E · · · E K`−1 E K` = G.

By the inductive hypothesis, the theorem is true for the groups Hk−1 and K`−1. If Hk−1 = K`−1, we
are done. Otherwise, let L = Hk−1 ∩ K`−1. The group L has order small enough to invoke the inductive
hypothesis and therefore has a composition series

{1} E L1 E L2 E · · · E Lt−1 E Lt = L.

Observe that by Theorem 1.10.5 [The Second Isomorphism Theorem], we realize the isomorphism
Hk−1/L = Hk−1/(Hk−1 ∩ K`−1) ∼= G/K`−1, so L = Hk−1 ∩ K`−1 is a maximal subgroup of Hk−1, and
therefore

{1} E L1 E L2 E · · · E Lt−1 E Lt = L E Hk−1

is a composition series. By the inductive hypothesis, the composition series

{1} E H1 E H2 E · · · E Hk−1

and

{1} E L1 E L2 E · · · E Lt−1 E Lt = L E Hk−1

have the same length and composition factors with multiplicity, so t + 1 = k. Arguing similarly, the
composition series

{1} E K1 E K2 E · · · E K`−1

and

{1} E L1 E L2 E · · · E Lt−1 E Lt = L E K`−1

have the same length and composition factors with multiplicity, so t+ 1 = `, and therefore k = `. Finally, if
we consider the composition series obtained by appending G to the aforementioned composition series:

{1} E H1 E H2 E · · · E Hk−1 E G,

{1} E L1 E L2 E · · · E Lt = L E Hk−1 E G,

{1} E K1 E K2 E · · · E K`−1 E G, and

{1} E L1 E L2 E · · · E Lt = L E K`−1 E G,

we see that the first two composition series still have the same length and composition factors with multi-
plicity, as do the last two composition series. Composition series 2 and 4 are the same except for the ending,
but by Theorem 1.10.5 [The Second Isomorphism Theorem],

Hk−1�L = Hk−1�Hk−1 ∩K`−1
∼= G�K`−1

and

K`−1�L = K`−1�Hk−1 ∩K`−1
∼= G�Hk−1

,

so composition series 2 and 4 have the same length and composition factors with multiplicity. Therefore by
transitivity, composition factors 1 and 3 have the same length and composition factors with multiplicity, as
we wished to show.
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Example 1.12.13. One composition series for D8 is

{1} E 〈r2〉 E 〈r〉 E D8.

The composition factors are Z/2Z, listed three times. Since Z/2Z is abelian, the above series is a solvable
series. A different composition series for D8 is

{1} E 〈s〉 E 〈s, r2〉 E D8,

but of course the composition factors are still Z/2Z, as they should be, by Theorem 1.12.12 [Jorder-
Hölder Theorem]. A solvable, but not composition, series for D8 is

{1} E 〈r〉 E D8.

The quotient 〈r〉/{1} ∼= Z/4Z is not a simple group, so the series is not a composition series.

Example 1.12.14. Trivially, if G is simple, then

{1} E G

is a composition series. The group G, with multiplicity 1, is the only composition factor of G.

Example 1.12.15. The group Z has no composition series. To see this, we must have at the tail

· · · pZ E Z,

but pZ ∼= Z, so after finitely many steps we are no closer to finishing the series. Alternatively, one can argue
that since Z is abelian, all its composition factors must be abelian, and since the order of Z is the product of
the order of its composition factors by Theorem 1.9.1 [Lagrange’s Theorem], we would have |Z| <∞.

On the other hand,

{0} E Z

is a solvable series, so Z is solvable.

Lemma 1.12.16. If G is nonabelian and simple, then G is not solvable.

Proof. Suppose G were solvable; i.e., there exists a solvable series

{1} E G1 E · · · E Gn−1 E G.

Since G is simple, Gn−1 = {1} or Gn−1 = G. If Gn−1 = {1}, then G/{1} = G is nonabelian, so the series
was not solvable. If Gn−1 = G, then there exists a shorter solvable series; use that instead. Iterate; by
finiteness the contradiction is reached.

Example 1.12.17. Recall the special linear group from Definition 1.5.4 and the general linear group from
Definition 1.5.3. We have SL2R E GL2R. SL2R is infinite and has a composition series, but GL2R is
not solvable, nor does it have a composition series. The composition series of SL2R is

{I2} E
〈[
−1 0
0 −1

]〉
E SL2R.

Example 1.12.18. The free group of order 2, F2, is not solvable and has no composition series. Observe
that Z/pZ ≤ F2 since 〈x, y | xp = 1, y = 1〉 ∼= Z/pZ, so F2 would have infinitely many composition factors.
One can argue that since F2 has A5 as a quotient, and quotients of solvable groups are solvable, since A5 is
not solvable, F2 cannot be.

Remark 1.12.19. Let G be a group. The following facts are easily verified.
1. If N E G and N and G/N are solvable, then G is solvable.
2. If G is solvable, then for all H ≤ G, H is solvable, and for all N E G, G/N is solvable.
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3. Let |G| <∞. G is solvable if and only if all the composition factors of G are abelian.

Definition 1.12.20 (extension). A group G is an extension of H by K if G has a normal subgroup N
with N ∼= H and G/N ∼= K. Equivalently,

1→ H → G→ K → 1

is a short exact sequence (Definition ??).

Example 1.12.21. H × K is an extension of H by K; via a short exact sequence this is obvious, as is
H × {1} ∼= H and (H ×K)/(H × {1}) ∼= K.

Example 1.12.22. The groups (Z/2Z)3, (Z/2Z) × (Z/4Z), D8, and Q8 are all extensions of Z/2Z by
(Z/2Z)2. For instance, 〈r2〉 E D8 and 〈−1〉 E Q8.

Remark 1.12.23. The Hölder program asks us to classify all finite simple groups. It is a monster, but it
has been done. The fact that all finite groups are constructed as a series of extensions with finite simple
groups is reason enough to do this.

Remark 1.12.24. All abelian groups are solvable. If G is abelian, then

{0} E G

is a solvable series.

Remark 1.12.25. The class of isomorphism types of solvable groups is the smallest one that contains all
abelian groups and is closed under group extensions. To see this, given a solvable series

{0} E G1 E · · · E Gn−1 E G,

we have G2 is an extension of G1 by G2/G1. The group G1
∼= G1/{0} is abelian, so G2/G1 is abelian.

Similarly, G3 is an extension of G2 by G3/G2, which is abelian. Continue in this manner. G is an extension
of an interated extension of abelian groups by an abelian group.

Example 1.12.26. Most nonabelian groups we have seen so far are solvable. S3, Q8, D8, D10, and S4 are
all solvable. In fact, all groups of order less than 60 are solvable. Recall from Definition 1.12.4 the group
A5, the alternating group of order 5!/2 = 60. This is a nonabelian simple group by Lemma 1.12.40 to
come, so by Lemma 1.12.16, A5 is not solvable. Further, S5 has A5 as a composition factor, and therefore
S5 is not solvable. A composition series is

{1} E A5 E S5.

Definition 1.12.27 (transposition). A 2-cycle (a, b) in Sn is called a transposition.

Lemma 1.12.28. For all n, Sn is generated by the set of all transpositions.

Proof. Induct on n. If n = 0 or n = 1, the base case is vacuously true. Let n = 2. We know S2
∼= Z/2Z,

and as a set S2 = {(1), (1, 2)}, so the base case is still true. For the inductive step, let σ ∈ Sn. As a
function σ : {1, . . . , n} → {1, . . . , n}, so σ(n) ∈ {1, . . . , n}. There are two cases. First suppose σ(n) = n, in
which case σ is in the stabilizer (Definition 1.7.17) (Sn)n. The stabilizer is isomorphic to Sn−1 via sending
transpositions to transpositions. Invoking the inductive hypothesis on Sn−1, we are done. Second suppose
σ(n) = i 6= n. Then (i, n)σ ∈ (Sn)n. As in the previous case, (i, n)σ is a product of transpositions, so σ
is.

Example 1.12.29. We can write σ = (1, 5, 4, 2, 3) as a product of transpositions. First, σ(5) = 4, so
(4, 5)σ ∈ (S5)5

∼= S4. Next, ((4, 5)σ)(4) = 2, so (2, 4)(4, 5)σ stabilizes 4 and 5. Continuing, (1, 3)(2, 4)(4, 5)σ
fixes 3, 4, and 5, and finally (1, 2)(1, 3)(2, 4)(4, 5)σ fixes 2, 3, 4, and 5, and therefore 1 as well. So
(1, 2)(1, 3)(2, 4)(4, 5)σ = (1), and solving for σ, we see that

σ = (4, 5)(2, 4)(1, 3)(1, 2).
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Remark 1.12.30. We can use Lemma 1.12.28 to write a presentation for Sn. Write sij for (i, j); we have
the following relations.
• sij = sji.
• sij2 = 1.
• If {i, j} ∩ {k, `} = ∅, then sijsk` = sk`sij .
• sijsjksij−1 = sijsjksij = sik. We call this the braiding relation.

Let R be the set of all four types of relations above, and let S = {sij | i, j ∈ {1, . . . , n}, i 6= j}. The group
〈S | R〉 is a presentation for Sn.

Example 1.12.31. One can use this presentation to show that

s14s12s15s13s45s35s24s13 = 1.

Definition 1.12.32 (sign homomorphism). Define the sign homomorphism ε : Sn → {−1, 1} by the
unique group homomorphism such that ε(σ) = −1 when σ is a transposition.

Lemma 1.12.33. The sign homomorphism ε is well-defined.

Proof. Given the presentation of Sn in Remark 1.12.30, we can show that ε respects the set of relations
R. Observe that
• ε(sij) = −1 = ε(sji),
• ε(sijsij) = ε(sij)ε(sij) = (−1)(−1) = 1 = ε(1),
• ε(sijsk`) = ε(sij)ε(sk`) = (−1)(−1) = 1 = (−1)(−1) = ε(sk`)ε(sij) = ε(sk`sij), and
• ε(sijsjksij) = ε(sij)ε(sjk)ε(sij) = (−1)(−1)(−1) = −1 = ε(sik).

Remark 1.12.34. If σ is a k-cycle, then ε(σ) = (−1)k−1.

Definition 1.12.35 (odd permutation). Let σ ∈ Sn. If ε(σ) = −1, then σ is odd.

Definition 1.12.36 (even permutation). Let σ ∈ Sn. If ε(σ) = 1, then σ is even.

Remark 1.12.37. If σ is a k-cycle, then σ is even if and only if k is odd (and vice versa).

Definition 1.12.38 (alternating group 2). Another way to define the alternating group on n symbols
An E Sn is that An = ker(ε : Sn → {−1, 1}). In other words, An = {σ ∈ Sn | σ is even}, as in Definition
1.12.4.

Remark 1.12.39. By Theorem 1.10.1 [The First Isomorphism Theorem], |An| = n!/2, since
Sn/An ∼= {1,−1}, so by Theorem 1.9.1 [Lagrange’s Theorem], |Sn : An| = |Sn|/|An| = 2. Thus
|An| = |Sn|/2 = n!/2.

Lemma 1.12.40. If n ≥ 5, then An is a nonabelian simple group.

Proof. An is clearly nonabelian; (1, 2)(2, 3) = (1, 3, 2) 6= (1, 2, 3) = (2, 3)(1, 2). We will only prove that A5

is simple. In S5, we will build an exhaustive table of the conjugacy classes of elements (the orbits under
the conjugation action), the size of the classes, and the image of the class under ε, since the parity of a
permutation is invariant under conjugacy. We have

Representative Size Image under ε
(1) 1 1

(1, 2) 10 −1
(1, 2, 3) 20 1

(1, 2, 3, 4) 30 −1
(1, 2, 3, 4, 5) 24 1
(1, 2)(3, 4) 15 1

(1, 2)(3, 4, 5) 20 −1

In A5, however, we have
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Representative Size
(1) 1

(1, 2, 3) 20
(1, 2)(3, 4) 15

(1, 2, 3, 4, 5) 12
(2, 1, 3, 4, 5) 12

By Proposition 1.8.13, if N E G, then N is a union of conjugacy classes of G. Suppose A5 has a normal
subgroup N . By Theorem 1.9.1 [Lagrange’s Theorem], |N | divides 60. A union of classes in the second
table must have cardinality dividing 60, but there is no way to do that nontrivially. Thus, A5 is simple.

1.13 The Class Equation

Theorem 1.13.1 (The Class Equation). Let G be a finite group. Let g1, . . . , gr be representatives of the
conjugacy classes of G which are not in Z(G), the center of G. One has

|G| = |Z(G)|+
r∑
i=1

|G : CG(gi)|.

Proof. As a set, G = Z(G) t [g1] t · · · t [gr]. Thus,

|G| = |Z(G)|+ |[g1]|+ · · ·+ |[gr]|.

By Corollary 1.11.27, |[gi]| = |G : CG(gi)|, and the result is shown.

Corollary 1.13.2. If P is a group of order pα where p is prime, then Z(P ) 6= {1}.

Proof. Let g1, . . . , gr be representatives of noncentral conjugacy classes. Reduce the class equation modulo
p. We have

0 ≡ p ≡ |P | ≡ |Z(P )|+
r∑
i=1

|P : CP (gi)| (mod p)

≡ |Z(P )|+
r∑
i=1

0 (mod p).

So |Z(P )| ≡ 0 (mod p), and therefore Z(P ) 6= {1}.

Corollary 1.13.3. If |P | = p2, then P is abelian. Furthermore, P ∼= Z/p2Z or P ∼= (Z/pZ)2.

Proof. By Corollary 1.13.2, Z(P ) 6= {1}. Consider |P/Z(P )|. It must be either 1 or p. If |P/Z(P )| = p,
then P/Z(P ) is cyclic by Corollary 1.9.7. By a homework exercise, P is abelian. Otherwise, if we have
|P/Z(P )| = 1, then P ∼= Z(P ) is abelian.

Remark 1.13.4. Given Theorem 1.13.1 [The Class Equation], one may ask: how do you find the
classes [gi]? First, find Z(G). We know that Z(G) ⊆ CG(gi), and we also know that 〈Z(G), gi〉 ≤ CG(gi).
This gives a lower bound on |CG(gi)|, and an upper bound on |G : CG(gi)| = |[gi]|. Pick h ∈ G not in 〈g〉 or
Z(G). We want to know whether or not h ∈ CG(gi), so compute hgih

−1. If hgh−1 6= gi, then hgih
−1 ∈ [gi].

If hgih
−1 = gi, then h ∈ CG(gi), so 〈Z(G), g, h〉 ≤ CG(gi). We know have a better upper bound on |[gi]|;

repeat.

Example 1.13.5. For abelian groups, |G| = |Z(G)|, so the class equation is unhelpful.
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Example 1.13.6. Consider D6 = {1, r, r2, s, sr, sr2}. We have

[r] = {r, r2}
CD6

(r) = 〈r〉
srs−1 = r−1 = r2

[s] = {s, sr, sr2}
CD6

(s) = 〈s〉
rsr−1 = sr2r−1 = sr

rsrr−1 = rs = sr2.

The class equation is therefore

|D6| = |Z(D6)|+ |D6 : CD6(r)|+ |D6 : CD6(s)|
6 = 1 + 2 + 3.

Example 1.13.7. Consider Q8 = {1,−1, i,−i, j,−j, k,−k}. The center of Q8 is Z(Q8) = 〈−1〉 = {1,−1}.
Let g ∈ Q8 \ Z(Q8). We have 〈Z(Q8), g〉 ≤ CQ8(g) and 〈Z(Q8), g〉 has at least four elements, so |[g]| ≤ 2,
and therefore must be 2. We can figure out the conjugacy classes with computation:

[i] = {i,−i}
[j] = {j,−j}
[k] = {k,−k}.

The class equation is

|Q8| = |Z(Q8|+ |[i]|+ |[j]|+ |[k]|
8 = 2 + 2 + 2 + 2.

Lemma 1.13.8. Two elements of Sn are conjugate if and only if they have the same cycle type; i.e., they
have the same partition of n ∈ Z. The conjugacy classes of Sn correspond to the partitions of n.

Proof. First, let σ, τ ∈ Sn. We want to show that τστ−1 and σ have the same cycle type. Write

σ = (a11, . . . , a1`1)(a21, . . . , a2`2) · · · (ak1, . . . , ak`k).

The cycle type of σ is the partition n = `1 + `2 + · · ·+ `k. Now via computation,

τστ−1 = (τ(a11), . . . , τ(a1`1)) (τ(a21), . . . , τ(a2`2)) · · · (τ(ak1), . . . , τ(ak`k)) .

The cycle types of σ and τστ−1 are the same.
In the other direction, suppose σ, τ ∈ Sn have the same cycle type. That means that

σ = (a11, . . . , a1`1) · · · (ak1, . . . , ak`k)

and

τ = (b11, . . . , b1`1) · · · (bk1, . . . , bk`k).

Define a permutation ρ : {1, . . . , n} → {1, . . . , n} via ρ(aij) = bij for all ij. By construction, ρ ∈ Sn, and a
computation verifies ρσρ−1 = τ , so σ and τ are conjugate, as desired.
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